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ABSTRACT 

The presence of a work zone increases disturbances to traffic flow and produces high 

cognitive workloads for drivers, which can increase the safety risks. There was an increase of 

about 11% in work zone-related fatalities from 2010 to 2014 despite a small decrease in non-

work zone-related fatalities in the U.S. 

A number of studies concluded speeding and distractions are the main unsafe driver 

behaviors contributing to work zone crashes. Federal Highway Administration (FHWA) 

crash facts indicated speeding as a contributing factor for 28% of work zone crashes in 2014.  

A series of countermeasures have been used to get drivers’ attention to comply with work 

zone conditions. There is limited information about which safety features are the most 

effective in accomplishing this goal. The effectiveness of safety features can sometimes vary 

due to driver behavior that has not been truly investigated due to limited information in our 

traditional crash data. 

The Naturalistic Driving Study (NDS) data, developed by the Strategic Highway 

Research Program (SHRP) 2 provides a unique opportunity to observe actual driver behavior, 

to identify main contributing factors associated with crashes and near-crashes, and to 

understand how drivers negotiate work zones. 

The aim of this dissertation is to develop models that provide a better understanding 

of driver behavior in work zones. The additional objective is to determine the most effective 

safety features to get drivers’ attention in reducing their speed in work zones. The task was 

accomplished by conducting three studies.  
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The first paper developed a logistic regression model using a number of explanatory 

variables which included driver behavior, work zone characteristics, and environmental 

conditions to predict the crash/near-crash event outcome.  

In the second paper, the speed trajectory time series data were used to develop models 

to accurately and efficiently estimate the location of changepoint in mean speed reacting to 

safety features utilized in work zones to encourage safe driving. 

The final paper utilized the methods of functional data analysis to understand and 

analyze driver behavior interacting with safety features applied in work zone with various 

characteristics. The methods were used to identify the effectiveness of various safety 

features. 
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CHAPTER 1.  GENERAL INTRODUCTION 

A work zone is defined as a segment of road where construction activities take place. 

There are a large and increasing number of road segments under construction and 

maintenance as highway system gets older. The presence of a work zone increases 

disturbance to traffic flow and produces high cognitive workloads for drivers which can 

increase the safety risks. There was an increase of about 11% in work zone-related fatalities 

from 2010 to 2014 despite a small decrease in non-work zone-related fatalities in the U.S. (1) 

Work zone safety is a major concern for construction workers, travelling publics, and 

transportation safety professionals. Work zone impacts on safety creates a strong need to 

protect road users and construction workers.  

1.1 Contributing Factors to Work Zone Safety Problem 

There are a large number of factors contributing to work zone crashes but it is 

believed that the major contributing factors are speeding, inattentive driving, and other risky 

driver behaviors, such as following too closely. A number of countermeasures have been 

proposed and utilized to get drivers’ attention and encourage safe driving in work zones, but 

there is limited information about the effectiveness of those countermeasures since driver 

behaviors are not clearly known for several reasons.  

The traditional method is to use the crash data to determine and evaluate crash 

causation, but crash data only include limited detail about the situation and does not address 

human contributing factors effectively. The level of detail provided on the crash report is 

dependent on the attending officer and his/her interpretation of the crash situation. As a 

result, in some cases work zone traffic control may be present but unrelated to crash because 
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the work zone was not active at the time of the crash, but crash coded as work zone related. 

In other cases, the impact of a work zone extends beyond the work zone boundaries such as 

during congestion or queuing, but since the crash does not occur within the defined 

boundaries, it is not reported as a work zone-related crash.  

As the past research identified driver as the major contributing factor in crashes, there 

is a little information on crash reports detailing how the driver contributed to the work zone 

crash. Most driver behavior information relies on driver’s own statement or witness 

testimonies, which could be inaccurate for various reasons, resulting in insufficient 

information.  

1.2 The Opportunity of Utilizing Naturalistic Driving Study 

The Naturalistic Driving Study (NDS) data, developed by the Strategic Highway 

Research Program (SHRP) 2, provides a unique opportunity to observe actual driver behavior 

and understand how they interact with roadway, vehicle and traffic environment. The NDS is 

referred to as an unobtrusive method of observation which studies driver’s daily driving 

behavior in a natural setting environment without any experimental control (2). In NDS, no 

driving instructions were provided to drivers as how, when, and where to drive, resulted in 

unbiased, reality-based data. That is why this study provides a unique opportunity to observe 

how drivers naturally interact with roadway, traffic environment, their own vehicle, and other 

road users.  

Technological advancement in recent years enables researchers to conduct such a 

huge scale naturalistic driving study. Many variables in this study were collected at high 

frequency of 10 Hz, which corresponds to 10 observations per second. The Data Acquisition 

System (DAS) in this study, which consists of video cameras, forward radar, Geographic 
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Positioning System (GPS), accelerometers, vehicle network information, eye tracking, and 

data storage system, was utilized to collect a massive volume of time series data. 

The NDS can be utilized to observe drivers’ daily normal driving behavior in order to 

understand some underlying causes of crashes and the effectiveness of safety measures. In 

addition, using forward roadway views from NDS, enables us to determine if a safety critical 

event (crash or near-crash) is actually work zone-related. Consequently, SHRP 2 NDS 

dataset can be utilized to identify how drivers negotiate work zones. 

1.2.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest and most comprehensive driving-based research 

study ever conducted. NDS is designed to observe driver’s daily driving behavior in a natural 

setting environment with no experimental control. The Virginia Tech Transportation Institute 

(VTTI) led this project implementation and coordination. More than 3,100 female and male 

drivers aged 16 to 98 were recruited in six unique and geographically distributed sites (New 

York, Florida, Washington, North Carolina, Indiana, and Pennsylvania). The participants’ 

vehicles were equipped with Data Acquisition System (DAS), which consists of sensors, 

cameras, Geographic Positioning System (GPS), vehicle network, lane tracking system, 

accelerometers, eye-tracking system, and data storage. The sensors of DAS collected data 

such as speed, GPS, and acceleration while four cameras collected forward, rear, driver face, 

and over the shoulder videos. Over 3,100 drivers had over 5 million trips over the study 

period of more than two years, resulting in over 30 million data miles and 4 million gigabytes 

of data. NDS collected a variety of variables regarding driver’s daily driving behavior 

without any experimental control. Most of the variables were collected at high frequency (10 

HZ), which is every 0.1 second (2). 



www.manaraa.com

4 

 

 

1.2.2 Background on SHRP 2 Roadway Information Database 

The Roadway Information Database (RID) was conducted to collect roadway 

information data for the roads driven by drivers in SHRP 2 NDS. The Center for 

Transportation Research and Education (CTRE) at Iowa State University led the 

implementation and coordination of the project, which used mobile data collection vans to 

collect about 12,500 center line miles of roadway data elements in the six NDS sites. In 

addition, other existing roadway data from government, public and private sources, as well as 

supplemental data, were utilized to populate a roadway element dataset linkable to NDS trips 

to support a comprehensive safety assessment of driver behavior. The identified roadway 

data elements included information on roadway alignment, number of lanes, lane type and 

width, intersection types and location, lighting, signage, median type, barriers, rumble strips, 

and other features. The RID integrated 511 data provided by states with roadway data 

collected throughout NDS study locations. The integrated 511 data was the primary source of 

identifying work zone locations and duration (3). 

1.3 Previous Research 

There have been considerable efforts in past few decades to address safety issues in 

work zones. Previous research has addressed driver, environment, and roadway/work zone 

characteristics which have contributed to work zone crashes. Crash types, locations, and 

contributing factors in work zones also have been investigated, along with the effectiveness 

of some work zone safety measures. The objective of this literature review is to characterize 

the nature of work zone crashes and review countermeasures and their effectiveness used in 

the past research. 
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1.3.1 Work Zone Crash Characteristics 

Several studies were undertaken to investigate the safety of roadway work zones 

compared to non- work zone locations and concluded that crash rates at work zones are 

significantly higher than non-work zone locations (4-9, 53).  

Rouphail et al. (1988) compared before and after construction crash rates on freeway 

work zones in Illinois. The crash rate during the construction period increased by an average 

of 88% compared to the before period. The crash rate decreased by an average of 34% for the 

after period compared to the construction period (4). 

Garber and Woo (1990) study found a 57% and a 168% crash increase on multi-lane 

and two-lane highway work zones compared to non-work zone periods in Virginia 

respectively (7).  

A more recent research by Silverstein et al. (2015) used a binary probit model to 

compare work zone and non-work zone crashes. The study results indicated both rear-end 

and sideswipe collision are more probable causes of fatalities in work zones compared to 

non-work zones. The study also concluded clear conditions, daylight, and straight roadway 

segments increased the possibility of a crash in the work zone (53). 

Mixed results have been demonstrated on the severity of crashes in work zones 

compared to non-work zone conditions. There were studies which concluded that crashes in 

work zones are relatively less severe than non-work zone crashes (4, 5, 10) and other studies 

that concluded that work zone crashes were more severe compared to non-work zone crashes 

(8, 9). In addition, there were studies which found no significant difference between work 

zone and non-work zone crashes (6-7). 

Akepati (2010) investigated work zone crash data for the Smart Work Zone  
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Deployment Initiative (SWZDI) region (Iowa, Kansas, Missouri, Nebraska, and Wisconsin) 

to determine characteristics and contributing factors of those crashes. About 75% of crashes 

occurred during daylight, and 69% with no adverse weather conditions. A majority of crashes 

occurred on a dry road surface (84%). Crash statistics showed 27.2% were injury crashes, 

with 296 people died as a result of those crashes for the five-year period studied.  

Crashes with other moving vehicles were about 73%, of which 43% and 15% were 

rear-end collisions and angle collisions, respectively (13).  

Regression models were utilized to predict the expected number of crashes at rural 

two-lane highway work zones looking at crashes on upstream and inside the work zones 

separately (Venugopal and Tarko, 2000). The models indicated the type, duration, length, 

and volume of the work zones were significant factors in predicting the number of crashes. 

The study results revealed shorter work zones have higher number of upstream crashes 

compared to longer work zones (14). 

Li and Bai (2006) studied Kansas work zone crashes from 1992 to 2004, to compare 

fatal and injury crash characteristics. The results of this study showed head-on was the main 

collision type for fatal crashes, and rear-end was the major type for injury crashes (15).  

Male drivers were involved in 75% of fatal crashes and 66% of injury crashes in 

Kansas. Drivers between 35 and 44 years old, and older than 65, are the high-risk driver 

groups in work zones. Male drivers aged 25 to 64 were involved in 64% of all work zone 

crashes, which might be due to the fact that this age group tends to drive more so they have 

higher exposure to the work zones (15).  

A study by Li et al. (2012) on truck-related crashes in Kansas highway work zones 

indicated that trucks were involved in a high percentage of fatal crashes while passenger cars 
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were mainly involved in injury crashes. About half of the truck drivers were at fault in work 

zone fatal crashes. The maneuver before the crash for most of the truck drivers was straight 

following. The rear-end crash was the dominant type of crash for all severity types (16). 

A research conducted by Ulman et al. (2006) identified the effects of night work 

activity on work zone crashes in Texas. They investigated the change in crash likelihood for 

active and inactive night and day construction work. Results showed higher crashes for active 

work zones for both night and day-times than during an inactive work zone periods. There 

was a higher percentage of rear-end crashes at night-time active work zones (17). 

Arditi et al. (2007) investigated crash characteristics of highway work zones by 

comparing daytime and nighttime construction activities. They studied fatal crashes to 

identify if there was any difference between night time and daytime construction. The 

lighting and weather conditions were included in the study as control parameters to 

determine their effects on frequency of fatal crashes happening in work zones. The Kruskal-

Wallis test was conducted to find if the number of fatal crashes and the number of people and 

workers involved in construction zones crashes significantly differ from nighttime to daytime 

conditions. This study concluded nighttime construction was more dangerous than daytime 

construction; however, weather condition variables had limited effects on this result (18).  

1.3.2 Work Zone Crash Types 

A number of research projects have examined crash data to identify crash types in 

work zones. The rear-end crash has been identified as the most predominant work zone crash 

type of all crashes by the majority of previous studies (4, 6-7-9). 
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Rouphail et al. (1988) found rear-end crashes were increased by 50% during a 

roadway construction period. Hall and Lorenz research demonstrated rear-end crash 

percentage increased from 9 to 14% during construction (4).  

Garber and Zhao (2002) concluded rear-end and sideswipe crashes were the most 

frequent crash types at the advanced and transition areas of work zones while fixed object 

and angular crashes were more dominant at the work area and termination area (8). 

Rear-end work zone crashes in Singapore were assessed by Meng and Weng (2010), 

which found rear-end crash risks increased with lane traffic flow rate and heavy truck 

proportion. The study also revealed higher rear-end crash risks for work zones with lane 

closures and suggested early merge as an effective method to reduce rear-end crash risk at 

merging point (21). 

Daniel et al. (2000) identified head-on, angle, and single vehicle as the predominant 

types of fatal crashes in work zones (22). 

Most fatal crashes are multi-vehicle crashes. Head-on, angle-side impact, and rear-

end are the three most frequent collision types for the multi-vehicle crashes (7, 15).  

Li and Bai (2008) compared characteristics of fatal and injury crashes work zones in 

Kansas. The study revealed head-on collisions as the dominant type of fatal crashes while 

rear-end was the major crash type for injury crashes (19).  

Garber and Woo (1990) concluded work zone crashes were more likely to involve 

multiple vehicles than non-work zone crashes (7).  
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1.3.3 Work Zone Crash Locations 

A work zone consists of advanced warning area, transition area, buffer area, activity 

area, and termination area. There are multiple research projects which evaluated the 

distribution of crashes within these areas. 

Activity area is the predominant location for all types of work zone crashes (8-9, 11- 

12). However, other research concluded differently. Nemeth and Migletz (5) study found 

higher crashes occurred in the buffer area. Srinivasan et al. revealed higher crash proportion 

in the advanced warning area (20). 

 Garber and Zhao (2002) concluded that rear-end crashes are the predominant crashes 

within the work zone advance warning area, transition area, and activity area. However, 

angle crashes are significantly higher at the termination area (8).  

Chambless et al. (2002) studied typical characteristics of work zone crashes in 

Alabama, Michigan, and Tennessee and revealed that 63% of work zone crashes take place 

on interstate, US, and state highways, as compared to 37% of non-work zone crashes. The 

work zone crashes on 45 and 55 mph speed zones were 48% as compared to 34% of non-

work zone crashes (23). 

 Some studies also revealed that most work zone crashes occurred on rural interstate 

and state highways (9, 25). However, another study revealed contradictory findings. The 

Garber and Zhao (8) study revealed that urban highways have a higher proportion of work 

zone crashes compared to rural highways. Jin et al. (2008) study found no relationship 

between road functional class and crash distribution in work zones (24). The majority of fatal 

and injury work zone crashes occurred within 51-60 mph speed limit zones (15). 
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1.3.4 Work Zone Crash Contributing Factors 

Many studies have been conducted to analyze work zone crash characteristics and 

their contributing factors. The findings of these studies indicate work zone crashes in 

different spatial locations share some common features and contributing factors. 

Li and Bai (2006) concluded inattentive driving, misjudgment, and disregarding 

traffic control are the top contributing factors for work zone fatal crashes (15).  

Chambless et al. (2002) study revealed 27% of work zone crashes were due to 

misjudging stopping distance and following too close in Alabama, Michigan, and Tennessee 

as compared to 15% for non-work zone crashes (23).  

Lindly et al. (2002) similarly identified misjudging stopping sight distance and 

following too closely are the predominant causes of work zone crashes in Alabama according 

to 1994-1998 crash data. The study also found the ratio of drivers speeding in work zones 

were higher than non-work zone drivers (25). The results of some other studies also indicated 

following too close as the dominant contributing factor in work zone crashes (6, 9).  

Kumar et al. (2015) utilized a qualitative approach by interviewing 66 construction 

workers from several work zones in Queensland, Australia, to identify nature and 

contributing factors in work zone crashes. The survey results reveal excessive vehicle speed, 

driver aggression towards road workers, and driver distraction as the major contributing 

factors to work zone crashes (26).  

Li and Bai (2006) revealed driver inattention is the major cause for both fatal and 

injury crashes in work zones (15).  

A number of studies identified speed as a major contributing factor to work zone 

crashes (8, 27-29). The Allpress et al. (2010) study found excessive speed as a major 
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contributing factor for increasing a driver’s risk of crash involvement at work zones in New 

Zealand (27). Sommers and McAvoy (2013) research revealed speed variance and congestion 

are typical causes of rear-end crashes in work zones (29).  

Bryden et al (1998) study showed impact with work zone traffic control devices 

caused about 33% of all work zone crashes (30). 

1.3.5 Temporal and Environmental characteristics 

Environmental factors such as lighting, weather, and surface conditions can all 

contribute to unsafe driver behaviors in work zones. 

Work zone crash data for Smart Work Zone Deployment Initiative (SWZDI) was 

investigated by Akepati (2010) and revealed 75% of crashes occurred during daylight, and a 

majority of crashes (84%) occurred on a dry road surface (13). Two other earlier studies 

found work zone crashes were increased at night due to the higher possibility of lane closures 

(10, 17).  

A study by Arditi et al. (2007) using the Kruskal-Wallis test was conducted to find if 

the number of fatal crashes and the number of people and workers involved in construction 

zones crashes significantly differ in nighttime versus daytime conditions. This study 

concluded nighttime construction is more dangerous than daytime construction; however, 

weather condition variables have a limited effect on this result (18). In contrast, Dissanayake 

and Akepati (2009) found daylight and good weather are the most probable conditions for 

work zone crashes (33).  

The daytime off-peak hours (10:00 a.m. – 4:00 p.m.) are the most hazardous time 

periods in work zones (15, 26). 
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In another study by Hall and Lorenz (1989) inclement weather conditions and bad 

roadway surface were found to have a significant impact on road work crashes (6). 

1.3.6 Driver Characteristics 

Past research indicated driver error as the main contributing factor to work zone 

crashes, noting that speeding, inattentive driving, speed too fast for the condition, and 

following too closely were the most frequent driver errors associated with severe work zone 

crashes. Research on driver characteristics and behaviors found age, gender, and risky 

driving behavior such as speeding and aggressive driving are all contributing factors to 

highway work zone crashes. A number of research quantified the proportion of human 

factors as the major contributing factor to more than 93% of all crashes on roadways (31, 32).  

Rumar et al. research (1985) studied crash causation and showed the proportion of 

drivers, roadway, and vehicles that were major contributing factors of crashes through the 

well-known Venn diagram as shown in Figure 1.1.  

 

Figure 1.1 Proportion of crash causation (Rumar et al., 1985) 
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As mentioned before, the study found human or driver error to be the contributing 

factor to 93% of crashes, while roadway and vehicle factors with 34 and 12%, respectively, 

have a much lower proportion of crash causation. 

The proportions of crash causation mainly attributed to drivers studied by Rumar et 

al., were confirmed more recently by the NHTSA study of 2015. This study was based on the 

National Motor Vehicle Crash Causation Survey (32). Table 1.1 shows the result of critical 

reasons attributed to drivers, vehicle, and the environment. 

Table 1.1 Crash critical reasons attributed to driver, vehicle, and environment 

Critical Reason  

Attributed to 

Estimated 

Number Percentage 

Driver 2,046,000 94% 

Vehicle 44,000 2% 

Environment 52,000 2% 

Unknown 47,000 2% 

Total 2,189,000 100% 

 

As shown in the table, 94% of related critical reasons for crashes were attributed to 

drivers, vehicle and the environment with 2% attributed to very minimal crash causations. 

A number of prior research studies identified the human factor as the main 

contributing factor in roadway crashes (31, 32, 50-51). Although driver behavior has 

contributed significantly to crashes, it is the least understood factor. This is mainly due to 

limited information about driver behavior in our traditional crash data. Also we have many 

unreported and under-reported crashes which creates a huge limitation on our existing crash 

database.  
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1.3.7 Effectiveness of Work Zone Safety Measures 

As many studies identified excessive speed as the predominant contributing factor to 

work zone crashes, effective speed control in work zones has become a major challenge for 

engineers and road construction communities. 

Research identifying the effectiveness of traffic control devices in work zones 

indicated the most effective measures in reducing mean speed and speed variance in work 

zones are speed display sign, flaggers, and automated radar detections with citations issued to 

vehicle owners. On the other hand, pavement markings, signs, and other standard traffic 

control devices were found to be ineffective in reducing vehicle speed in work zones (34, 42, 

44-45). 

The Iowa Department of Transportation (Iowa DOT) utilizes various measures to 

reduce speed in work zones by setting up equipment in construction segments to evaluate the 

effects of speed reduction. Methods used to reduce speed in work zones were running speed 

indicators, speed limit regulation signs, speed limit advice signs, changeable message signs, 

and a crackdown against speeders which was found to be the most efficient way to slow 

down the traffic. Although a crackdown against speeders was the most efficient method, it 

was not cost effective, so the combination of changeable message signs and current speed 

indicators was the preferred method for speed regulation (34). 

Kamyab and Storm (35) conducted a research to find the effectiveness of fluorescent 

yellow-green background for vehicle mounted work zone signs, noting that, “moving work 

zones have fewer traffic control devices than stationary work zones and provide no buffer 

space for vehicles that encroach on work zones.” To improve the safety of moving 

operations, the Iowa DOT created a six-inch fluorescent yellow-green (FYG) background for 
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work zone signs mounted on the back of work zone vehicles. The purpose of this study was 

to investigate the effect of the sign’s improved visibility in inspiring drivers to make an early 

merge to the open lane prior to a lane closure. Data was collected on two sites on US 30, mile 

post 161, near Boone, and two sites on I-35, milepost 101 and 118. Results of this study 

revealed 5 and 2% reduction of right lane traffic proportion in the after condition on US 30 

sites and I-35 sites, respectively.  

As exceeded speed and speed differential were identified as significant contributing 

factors to crashes (33, 36, 43), several studies attempted to assess safety methods that would 

reduce speed in work zones (33, 36, 43). Maze et al. specified combinations of work zone 

speed limit with other regulatory signs could be effective in reducing speed (36).  

A number of research studied the effect of speed monitoring displays in getting 

drivers’ attention to reduce their speed and collectively confirm the effectiveness of speed 

display systems in reducing the average speeds in work zones (36-38). 

A study was conducted by Vicki and Jonathan (1999) to investigate the work zone 

crash countermeasures identifying effective countermeasures to reduce work zone crashes in 

Arizona. They used crash data collected by the Accident Location Identification Surveillance 

System (ALISS) which includes crashes that occurred near three locations: under-

construction locations where through traffic was allowed and where traffic was detoured 

within the work zone, existing temporary lane closure areas, and under repair areas. The 

crashes were analyzed based on the severity and on the conditions of when the crashes took 

place. Based on the study results, a number of different countermeasures were recommended 

in order to reduce work zone crashes. Police presence in advance warning areas of work 

zones which reduced vehicles’ speed, speed limit enforcement in work zones by displaying 
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license plate numbers, changeable message signs, and radar-activated sound systems were 

recommended countermeasures by researchers in this study (39). 

Suk-Ki Lee et al. (2012) studied safety problems associated with two-lane highway 

construction projects in Korea which requires full or partial road closures. Two-way delays 

and poor traffic control are the main issues of these types of road construction. Typically 

flagging is used to control work zone traffic on a two-way highway by closing one way and 

changing traffic movements. One or two-way delays, along with poor driver visibility, are the 

main issues with flagging control which may result in serious crashes in work zones. To 

minimize these problems, they used actuated traffic control with fixed and dynamic all red 

phases to control traffic movement. They analyzed each control method based on average 

control delay per vehicle to determine the effectiveness and the number of conflicts in a work 

zone to assess safety. Actuated traffic control with dynamic all red was found the most 

effective way of signal controlling with both safety and mobility considerations on two-way 

highways (40).  

Many studies have examined the effect of police enforcement and Intelligent 

Transportation System (ITS) applications on vehicle speeds in work zones. Avrenli et al. 

(2011) explored effects of police enforcement and ITS implementation on work zone speed 

flow curve and capacity. They collected three sets of data in work zones on I-55 close to 

Chicago. The first set collected when traditional signage in work zones suggested by Manual 

of Uniform Traffic Control Devices (MUTCD). The second set added police enforcement to 

the traditional signage. The third set added Speed Photo Enforcement (SPE) to recommended 

signage by MUTCD. The results revealed both police enforcement and SPE significantly 

changed the speed flow rate in work zones compared to only traditional MUTCD signage. 



www.manaraa.com

17 

 

 

Implementing police enforcement and SPE both lowered the speed in the uncongested part of 

the speed flow curve, and caused a small capacity reduction of about 50 and 100 passenger 

car per hour, per lane, for police enforcement and SPE, respectively (41). 

To improve compliance with work zone speed limits, Brewer et al. (1984) conducted 

a field study to identify effective measures to inspire drivers to observe the posted speed 

limits in work zones. Three devices were used to conduct this study, including a speed 

display trailer, changeable message sign with radar, and orange-border speed limit sign. 

Devices were tested at two sites in Texas including a rural interstate highway and an urban 

U.S. highway Field study results using these devices indicated that speed display devices 

have a very high potential for speed reduction and compliance improvement. It has been 

revealed that orange borders significantly improve speed limit signs’ visibility, but don’t 

have a measurable effect on compliance. Results indicates drivers are likely to drive as fast as 

they feel comfortable regardless of posted speed limit, if there is no active enforcement (42).  

Studies on the effectiveness of changeable message sign (CMS) indicated its 

effectiveness in reducing speeds and informing traffic about upcoming work zone and are 

more effective than traditional work zone warning sign (42, 46). 

A study by Zech and Mohan (2008) measured the effect of three commonly used 

CMS in reducing vehicle speed in work zones. The study recorded the speed of 180,000 

vehicles on Interstate 90 and found that the “WORK ZONE/ MAX SPEED 45 MPH/ BE 

PREPARED TO STOP” message was effective to reduce the vehicle speeds between 3.3 and 

6.7 mph. The study concluded a properly selected CMS message can significantly reduce 

traffic speeds in work zones (47).  
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Li and Bai (2011) used changeable message signs at 250, 750, and 1,250 feet from 

work zones. Displaying “WORK ZONE AHEAD SLOW DOWN” signs revealed that 

changeable message signs will be more effective in reducing vehicle speed if they are placed 

between 556 to 575 feet from the work zone. Alternative messages, including “YOUR 

SPEED IS ## MPH,” changing to “SLOW DOWN,” followed by “MIMIMUM FINE $200” 

had positive effects on getting drivers’ attention to reduce their speed. The results indicate 

the percentage of drivers driving 5, 10, 15, 20, and 25 miles over the speed limit were 

reduced by 20, 20, 10, 3, and 0.3%, respectively (48). 

The presence of a speed photo enforcement van in a work zone with the same 

function as red light cameras, was successful in lowering vehicle speed from 6.4 to 8.4 mph. 

In a different study, it was effective reducing the speed by as much as 7.9 and 6.6 mph for 

cars and heavy vehicles, respectively (49). 

The implementation of speed trailers along the side of an urban road, which flash the 

speed if the vehicle is traveling over the speed limit, was effective in reducing speeds by up 

to 2 mph (49).  

Allpress et al. (2010) evaluated the effect of “excessive speed” using two intervention 

processes which were designed to control traffic speed entering the work zone area in New 

Zealand. They realized “excessive speed” was a major contributing factor in increasing a 

driver’s risk of crash involvement at work zones. Their research focused on “perceptual 

countermeasures” which are “manipulations of the roadway or roadside environment 

designed to increase drivers ‘estimation or feeling of speed.”  Lane width reduction is a 

common method of the “perceptual countermeasure” application. The aim of lane width 

reduction is to restrict the amount of usable road by introducing road edge rumble strips or 
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orange cones. It was even demonstrated that narrowing a driver’s perception of lane width in 

a driving simulator lead to a decrease in driving speed. The work zone set up consisted of an 

orange road work warning sign at 150 m and a 50 km/h speed limit sign at 75 m from the 

start of the work zone. The work zone intervention layout is shown in Figure 1.2. 

 

Figure 1.2 Work zone intervention layout (Allpress et al., 2010) 

The work zone itself was 300 m. Three traffic counting devices were used. The first 

counter was laid at 400 m before the first speed reduction sign, the second was placed at the 

beginning of the road work, ant the third was installed at midway of the work zone.  

Two experimental intervention methods were testing the effectiveness of traffic coin 

arrangements both in equal spacing or decreasing spacing as shown in the figure 1.3.

 

Figure 1.3 Cone arrangements used in the study (Allpress et al., 2010) 
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The study was designed to determine mean speed for even, uneven, and baseline 

conditions. Baseline data were collected when no interventions were in place, but to ensure 

road and environmental condition uniformity data report was limited to time ranges when 

experimental interventions were conducted. One-way ANOVA tests were implemented to 

identify the effects on mean speeds upon conducting each experiment. Results showed both 

even and uneven cone spacing intervention were highly effective and very convenient, 

although uneven spaced cones are more likely to reduce the number of speed related crashes 

in construction zones (27). 

Sommers and McAvoy (2013) studied excessive speed to find the safest and most 

effective countermeasures to rectify speeding problems in work zones. The purpose of this 

study was to make drivers aware of the heightened risk in work zones by finding the safest 

and most effective countermeasure for speed reduction. This study along with some others 

tested Dynamic Speed Sign (DSS) as a passive enforcement measure, which can be trailer 

mounted or permanently mounted. Laser detectors can be used to measure the approaching 

vehicle speed and display it on the device. Studies revealed when DSS are used in work 

zones, travel speed can be reduced by as much as 5 mph (29). 

A study by Sommers and McAvoy (2013) selected twenty countermeasures for 

simulator testing and conducted laboratory controlled experiments to measure driver 

behavior and performance. Drivers were asked to drive five different scenarios for 10 

minutes, taking a break in between, with each containing four countermeasures as shown in 

Table 1.2 (29).  

Analyses of 20 countermeasures in reducing speed within construction zones in the 

virtual setup indicate the “presence of construction workers, construction vehicles, law 
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enforcement, speed photo enforcement, and shifting lanes” were the most effective 

approaches to reduce speed in construction zones. Also, three sets of rumble strips, concrete 

barriers, other channelizing strategies, and changeable message sign with speed reduction of 

less than 10 mph were the least effective methods reducing speeds in work zones 

Table 1.2 Organization of the Virtual Scenarios (Sommers and McAvoy, 2013) 

 

The vast majority of past research looked at the effectiveness of a single speed 

countermeasures in work zones. Hildebrand and Mason (2014) evaluated the effectiveness of 

safety measures in three different rural work zone with a semi-controlled environment in 

Canada. Speed data were collected at three spots, including 500 m upstream of the activity 

area, 75 m upstream of the activity area, and immediately adjacent to the activity area to 

approximate the speed profile of vehicles approaching the active area. The safety measures 

identified and tested were Floating Speed Zones (FSZ), Traffic Control Person (TCP), 
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Narrow Lanes, Radar Speed Display Board (RSDB), Variable Message Sign (VMS), and a 

Fake Police Vehicle. These traffic control measures were singularly and collectively 

evaluated to identify the most effective measure(s) in slowing the traffic through the 

identified work zones. The study concluded a combination of TCP and FSZ had the highest 

effect in speed reduction by 23 km/h. A Fake Police Vehicle and FSZ, and a combination of 

RSDB and FSZ, both made the traffic slow down by an average of 19 km/h (54).  

1.3.8 Summary of Major Findings 

This section reviewed previous research regarding work zone crash characteristics 

and contributing factors to those crashes. A number of different research studies revealed 

contradicting results for the same work zone characteristics studied. Some studies revealed 

work zone crashes were more severe than non-work zone crashes while other found work 

zone crashes to be less severe. There were also studies which didn’t find any significant 

difference between work zone and non-work zone crashes. There were also mixed results on 

the work zone crashes at night versus daytime. Some studies concluded construction is more 

dangerous at night compared to daytime, while other studies believed daytime and good 

weather condition are the most probable condition for work zone crashes.  

There was also some disagreement on the most predominant location of work zone 

crashes. Some believed advance area as the predominant location of work zone crashes, 

while others found higher crashes occurred in the activity area, and still another study found 

the buffer area as the most probable location of work zone crashes. 

However, there was strong agreement among many studies about the crash type, 

which found rear-end as the most predominant type of crash in work zones. Studies also 

found head-on to be the major collision type of fatal crashes, while rear-end was the main 
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crash type for injury crashes in work zones. Trucks were involved in more fatal crashes and 

passenger cars were involved in more injury crashes in work zones as some studies noted. 

Also many study results concluded speeding, inattentive driving, following too 

closely, and misjudging stopping distance to be among the major contributing factors of work 

zone crashes. Also speed variance and congestion were attributed to rear-end crashes in work 

zones. 

There are a large number of factors contributing to work zone crashes but it is mainly 

believed that the major contributing factors are speeding, inattentive driving, and other 

unsafe driver behaviors, such as following too closely. Although driver behavior has 

significantly contributed to the crash causation, it is the least understood factor attributed to 

crash causation. This is mainly due to limited information about driver behavior in our 

traditional crash data. Most driver behavior information relies on a driver’s own statement or 

witness testimonies, which could be inaccurate for various reasons, indicating these factors 

are not very well understood. 

A number of countermeasures have been proposed and utilized to get driver’s 

attention and encourage safe driving in work zones, but there is limited information about the 

effectiveness of these countermeasures since driver behavior is not clearly understood. 

The NDS data provide a unique opportunity to observe and model actual driver 

behavior and understand how they interact with roadway, vehicle, and traffic environment. 

The NDS can be utilized to develop models to provide insight into driver daily normal 

driving behavior in order to understand some underlying causes of crashes and to determine 

how drivers negotiate work zones. 
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1.4 Problem Statement 

The funding of federal and state agencies has been allocated to preserve the existing 

highway network. As a result, more and more highway work zones have been established 

nationwide. Construction activities produce disturbances on regular traffic flows and creates 

dangerous conditions for both road workers and the traveling public. Work zones may 

introduce severe traffic congestions that can cause frustration and aggressiveness for drivers, 

and therefore increase the risk of traffic crashes in work zones. Improving work zone safety, 

while providing an acceptable mobility with minimal interruption of traffic flow to road users 

has become a major challenge for road safety professionals.  

Considerable effort has been made by federal, state, local, and private agencies to 

improve safety and mobility of work zones. Federal Highway Administration (FHWA) and 

American Association of State Highway and Transportation Officials (AASHTO) have been 

initiating numerous programs and guidelines to improve work zone safety. Various projects 

have been developed and funded by state Department of Transportations (DOT) to improve 

work zone safety in their jurisdictions. 

There has been extensive research conducted by different communities and concerned 

groups to address safety issues in work zones. Even with the extensive effort devoted by 

various institutions, there is no indication that safety improvements in work zones were 

satisfactory.  Despite a slight decrease of about 1.2% in no-work zone crash fatalities and 

3.8% decrease in fatality rates from 2010 to 2014, there was an increase of about 11% in 

work zone related fatalities nationwide (1).   

To address work zone safety issues, clear understanding of the nature of work zone 

crashes and their contributing factors could be beneficial to engineers to select proper 
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measures that can minimize the negative impacts of work zones on traffic safety. Past 

research indicated crash data as the main source of analyses that have been widely used to 

evaluate crash causation and understand the contributing factors to work zone crashes. As the 

past research also indicates human factors as the major contributing factors to about 93% of 

crashes (Rumar et al., Salmon et al. 2005, NHTSA 2015), the work zone crash data have a lot 

of limitations in understanding the role of human factor in crashes. This may be one of the 

reasons why the recommendations from prior research have not satisfactory improved safety 

in work zones. The recent developments of SHRP 2 NDS allow us to observe daily driving 

behavior of drivers in work zones. 

1.5 Purpose of the Research 

The objective of this research is to develop models which provide a better 

understanding of how drivers negotiate work zones, to determine the factors contributed to 

safety critical events, and to identify driver behaviors that contributed to rear-end, sideswipe, 

and other typical work zone crashes. A further objective is to create models to evaluate how 

drivers react to various safety measures and to identify the effectiveness of safety features. 

This information can be used to properly select countermeasures associated with the main 

contributing factors and provide the most effective safety measures in work zones to get 

drivers’ attention to navigate the work zone safely. The ultimate objective of this research is 

to observe and understand driver behavior, which could help to reduce the number and 

severity of crashes in work zones. There are three research questions in this dissertation. The 

developed models will help to address these research questions. 
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1.6 Research Questions 

The objective of this dissertation is to evaluate how drivers negotiate work zones 

through the analysis of SHRP 2 Naturalistic Driving data. There are three research questions 

in this dissertation. The first research question is an analysis of crashes and near-crashes in 

work zones using a logistic regression model. The second research question utilizes a Pruned 

Exact Linear Time (PELT) model to observe and model how drivers react to various safety 

measures introduced in work zones to attract drivers’ attention. The third research question 

concentrated on the power of Functional Data Analysis (FDA) in converting discrete time 

series observation to a series of continuous functions to identify the effect of any individual 

safety feature to get drivers to slow down in work zones. The three research questions 

mentioned here will be discussed in more details in the following sections. 

1.6.1 Research Question 1: What are the contributing factors to safety critical events in 

work zones compared to baseline (normal driving)? 

This research question focused on the analysis of work zone crashes and near-crashes 

which was identified as Safety Critical Events utilizing SHRP 2 NDS data. The majority of 

the prior research relied on traditional crash data collected by the officer at the crash site and 

lacked human contributing factors, as what the driver was doing prior to the crash. The NDS 

data provide us with a number of important driver behavior variables, which help us to 

observe the driver behavior associated with safety critical events, and identify the 

contributing factors to safety critical events from the observed behavior. The crashes and 

near-crashes were obtained from the SHRP 2 InSight website by conducting query for 

construction-related events. In total 256 crashes and near-crashes were identified initially. 

The number then was reduced to 148 by observing the forward video images to verify if the 
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work zone was actually an active work zone. The criteria used for this purpose was lane 

closure, shoulder closure, lane shift, the presence of workers, and the presence of equipment, 

which created some disturbance to the traffic flow. A total of 1,171 baseline work zone 

related events also were identified from SHRP 2 InSight website. The purpose of the analysis 

is to investigate the characteristics of crashes and near crashes which were combined and 

defined as safety critical events and compare that to normal driving behavior (baseline) in 

work zones. 

1.6.2 Research Question 2: Where drivers start to react to the presence of work zones 

and how they interact with various safety measures in work zones? 

Multiple changepoint models will be developed to analyze speed time series data in 

work zones. The objective of this research question is to assess how drivers react to the 

presence of work zones’ advances warning sign, merge sign, lane closure sign, and other 

safety measures such as Dynamic Message Sign (DMS), Dynamic Speed Feedback Sign 

(DSFS), flashing arrow, and similar safety measures in work zones. These countermeasures 

tend to get drivers’ attention to react to the signage and reduce their speed, which help them 

safely traverse the work zone area. It is therefore essential to find how drivers react to a set of 

safety measures throughout the work zone to identify the effectiveness of countermeasures. 

Due to the presence of multiple safety measures throughout the work zone, drivers may react 

differently to each or a combination of measures which creates a changepoint and 

collectively creates multiple changepoints.  

Multiple changepoint analysis is a statistical tool designed to divide time series data 

into isolated segments to show the underlying properties of its source of isolation. The 

Pruned Exact Linear Time (PELT) method was used to identify the optimal number and 

locations of multiple changepoints in speed time series trajectories from quarter mile 



www.manaraa.com

28 

 

 

upstream of the first work zone warning sign all the way through the work area. The ultimate 

purpose of the analysis is to find an effective safety measure layout and identify the most 

effective countermeasure. 

1.6.3 Research Question 3: How drivers negotiate work zones and how effective are the 

safety features in getting drivers’ attention? 

The objective of this research question is to expand the findings of research question 

2 to observe where drivers start to react to the presence of a safety measure and to identify 

the effect of any individual safety feature throughout the work zone. A series of safety 

measures such as Dynamic Massage Sign (DMS), Dynamic Speed Feedback Sign (DSFS), 

work zone speed limit sign, lane closure sign, and similar signs intended to get drivers’ 

attention to reduce their speed and navigate the work zone safely. It is therefore essential to 

observe drivers’ behavior directly from speed time series data collected at every 0.1 second. 

The significance of any individual safety feature can be quantified by utilizing functional 

data analysis methods.   

1.7 Dissertation Organization 

This dissertation covers five chapters. Chapter 1 provided a background of the work 

zone safety issues. It also provided the review of previous literature in great depth to identify 

roadway construction safety-related issues, to find major type and locations of roadway 

construction crashes, and to explore main contributing factors associated with crashes in 

work zones. Furthermore, the major findings and the knowledge gaps of previous research 

are discussed in this chapter. Chapter 2 addresses the first research question by analyzing 

crashes and near crashes in work zones using SHRP 2 NDS data and developing logistic 

regression models. Chapter 3 presents the results of the multiple changepoint analysis models 
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on speed profile intended to accurately and efficiently estimate the location of changepoint in 

mean speed reacting to safety features in work zones. Chapter 4 intends to find where drivers 

start to react and to identify the effectiveness of any individual safety feature throughout the 

work zone by utilizing functional data analysis methods. Chapter 5 delivers the summary of 

major findings and contributions of this dissertation, limitations of the research, and 

recommendations for future research.  
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CHAPTER 2.  ANALYSIS OF CRASHES AND NEAR-CRASHES IN 

WORK ZONES USING SHRP 2 NATURALISTIC DRIVING STUDY 

DATA 
Modified from a paper to be submitted to the Accident Analysis and Prevention 

Hossein Naraghi and Omar Smadi 

Abstract 

The presence of a work zone increases disturbance to traffic flow and produce high 

cognitive workloads for drivers which can increase the safety risks. There was an increase of 

about 11% in work zone-related fatalities from 2010 to 2014 despite a small decrease in non-

work zone-related fatalities in the U.S. (1). Work zone safety is a major concern for 

construction workers, travelling publics, and transportation safety professionals. Work zone 

impacts on safety create a strong need to protect road users and construction workers. 

It is mainly believed that distraction, speeding, and other unsafe driver behaviors are 

the main contributing factors to work zone crashes. The available crash data is limited to 

reported crashes and the level of detail provided is dependent on the interpretation of the 

attending officer at the scene. As a result, it is not clear what behaviors drivers were involved 

in prior to the incident and not clear if coded work zone crashes were actually work zone- 

related. The Naturalistic Driving Study Data conducted by Strategic Highway Research 

Program (SHRP) 2 offers a unique opportunity to observe actual driver behavior. Also, using 

forward roadway views, work zone-related events can be coded more accurately.  

The research objective is a better understanding of the role of driver behavior such as 

speed and distractions in work zone crashes or near-crashes (safety critical events). Work 

zone data were extracted from the Insight data access website. Data for a total of 256 safety 

critical events and 420 baseline events were requested. Data were reduced and coded using 

event detail table, time series data, and roadway forward videos. 
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Descriptive statistic and predictive modeling were used to analyze work zone safety 

critical and baseline events. The descriptive statistical results indicated rear-end has a high 

proportion in safety critical events. For work zone configuration, lane shifts with no 

shoulders had a much higher proportion for baseline events, while right lane closures 

contributed to a higher proportion of safety critical events. Safety critical events were more 

likely to involve female drivers, speeding, distractions, speed variations, urban area, and 

intersection compared to baseline events. 

2.1 Introduction 

Addressing work zone safety problems has become a high priority issue for 

transportation officials. A thorough knowledge of nature and potential contributing factors 

associated with work zone crashes is needed to make informed decisions on applying 

appropriate measures to improve safety concerns in work zones. This research focused on the 

naturalistic driving study data (NDS) conducted by The Strategic Highway Research 

Program (SHRP) 2. The primary objective of this study is to investigate the characteristics of 

crashes and near-crashes (safety critical events) and compare that to the normal driving 

situation (baseline events) in work zones. This chapter intends to analyze crashes and near 

crashes and compare that to normal driving behavior in work zones using SHRP 2 NDS data.  

Several research studies indicate driver error as the main contributing factor to work 

zone crashes (2-5). The previous research on work zone crash causation indicated speeding, 

inattentive driving, speed too fast for the condition, and following too closely were the most 

frequent driver errors associated with severe work zone crashes. Research on driver 

characteristics and behaviors found age, gender, and risky driving behavior such as speeding 

and aggressive driving are all contributing factors to highway work zone crashes. Rumar et 
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al. study quantified the proportion of human factors as the major contributing factor to more 

than 93% of all crashes on roadways (Rumar et al. 1985, NHTSA 2015).  

As literature revealed, many prior studies identified human factor as the main 

contributing factor in roadway crashes. Although driver behavior has contributed 

significantly to crashes, it is the least understood factor attributed to crash causation. This is 

mainly due to limited information about driver behavior in our traditional crash data. Also we 

have many unreported and under-reported crashes which create a huge limitation on our 

existing crash database. The crash data lack accurate and complete information on human 

factors. The driver involved in a crash might not remember what he was doing prior to the 

crash, be purposely hiding the facts, or might be dead in a fatal crash situation. It is therefore 

extremely difficult to acquire reliable and accurate driver behavior from the crash report. 

Another major situation arises when a risky driver behavior is not recorded in crash database 

because it didn’t end up in any crash and was just a near-crash. A near crash was defined as a 

safety critical event requiring abrupt evasive behavior to avoid a crash (VTTI 2015). The 

near-crash can provide valuable driver behavior information in a proactive approach of crash 

avoidance. Prior research on driver behavior comes from analysis of traditional crash data. 

Although crash data is one of the most important sources for the traffic safety research, it 

lacks the complete and accurate driver behavior information.  

This research focused on the analysis of work zone crashes and near-crashes which is 

collectively defined as Safety Critical Events utilizing SHRP 2 NDS data. The majority of 

the prior research relied on traditional crash data collected by the officers at the crash site, 

which often lacked human contributing factors, as what driver was doing prior to the crash. 

The NDS data provided a number of important driver behavior variables which helped to 
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account for driver behaviors associated with safety critical events and identify contributing 

factors to safety critical events from observed behaviors. 

2.1.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest and most comprehensive driving-based research 

study ever conducted. NDS is designed to observe driver’s daily driving behavior in a natural 

setting environment with no experimental control. The Virginia Tech Transportation Institute 

(VTTI) led this project implementation and coordination. More than 3,100 female and male 

drivers aged 16 to 98 were recruited in six unique and geographically distributed sites (New 

York, Florida, Washington, North Carolina, Indiana, and Pennsylvania). The participants, 

vehicle were equipped with Data Acquisition System (DAS) which consists of sensors, 

cameras, Geographic Positioning System (GPS), vehicle network, lane tracking system, 

accelerometers, eye-tracking system, and data storage. The sensors of DAS collected data 

such as speed, GPS, and acceleration while four cameras collected forward, rear, driver face, 

and over the shoulder videos. Over 3,100 drivers had over 5 million trips over the study 

period of more than two years, resulting in over 30 million data miles and 4 million gigabytes 

of data. NDS collected a variety of variables regarding driver’s daily driving behavior 

without any experimental control. Most of the variables were collected at high frequency (10 

HZ), which is every 0.1 second (6). 

2.1.2 Background on SHRP 2 Roadway Information Database 

The Roadway Information Database (RID) was conducted to collect roadway 

information data for the roads driven by drivers in SHRP 2 NDS. The Center for 

Transportation Research and Education (CTRE) at Iowa State University led the 

implementation and coordination of the project, which used mobile data collection vans to 



www.manaraa.com

39 

 

 

collect about 12,500 center line miles of roadway data elements in the six NDS sites. In 

addition, other existing roadway data from government, public and private sources, as well as 

supplemental data, were utilized to populate a roadway element dataset linkable to NDS trips 

to support a comprehensive safety assessment of driver behavior. The identified roadway 

data elements included information on roadway alignment, number of lanes, lane type and 

width, intersection types and location, lighting, signage, median type, barriers, rumble strips, 

and other features. The RID integrated 511 data provided by states with roadway data 

collected throughout NDS study locations. The integrated 511 data was the primary source of 

identifying work zone locations and duration (7). 

2.2 Literature Review 

A lot of effort has been made in past few decades to address safety issues in work 

zones. Previous research has addressed driver, environment, and roadway/work zone 

characteristics which have contributed to work zone crashes. The objective of this literature 

review is to characterize the nature of work zone crashes and review the characteristics, 

types, locations, and contributing factors associated with work zone crashes identified in the 

previous research. 

2.2.1 Work Zone Crash Characteristics 

Several studies were undertaken to investigate the safety of roadway work zones 

compared to non-work zone locations and concluded crash rates at work zones are 

significantly higher than non-work zone locations (9-14).  

Rouphail et al. (1988) compared before and after construction crash rates on freeway 

work zones in Illinois. The crash rate during the construction period was found to be 
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increased by an average of 88% compared to the before period. The crash rate was decreased 

by an average of 34% for the after period compared to the construction period (9). 

Garber and Woo (1990) study found a 57% and a 168% crash increase on multi-lane 

and two-lane highway work zones compared to non-work zone period in Virginia 

respectively (12).  

A more recent research by Silverstein et al. (2015) used a binary probit model to 

compare work zone and non-work zone crashes. The study results indicated both rear-end 

and sideswipe collision are more probable cause of fatalities in work zones compared to non-

work zones. The study also concluded clear conditions, daylight, and straight roadway 

segments increased the possibilities of those crashes (37). 

 Mixed results have been found on the severity of crashes in work zone 

compared to non-work zone conditions. There were studies which concluded that crashes in 

work zones end up to be relatively less severe than non-work zone crashes (9-10, 15) and 

other studies that concluded that work zone crashes were more severe compared to non-work 

zone crashes (13-14). Additionally, there were studies which found no significant difference 

between work zone and non-work zone crashes (11-12). 

Akepati (2010) investigated work zone crash data for the Smart Work Zone 

Deployment Initiative (SWZDI) region (Iowa, Kansas, Missouri, Nebraska, and Wisconsin) 

to determine characteristics and contributing factors of those crashes. About 75% of crashes 

occurred during daylight, 69% with no adverse weather conditions. A majority of crashes 

occurred on a dry road surface (84%). Crash statistics showed 27.2% are injury crashes and 

296 people died as a result of those crashes during the five-year period studied.  
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Crashes with other moving vehicles was about 73%, of which 43% and 15% were 

rear-end collisions and angle collisions, respectively (16).  

Regression models predicted the expected number of crashes at rural two-lane 

highway work zones looking at crashes on upstream and inside the work zone separately 

(Venugopal and Tarko, 2000). The models indicated the type, duration, length, and volume 

of the work zone were significant factors in predicting the number of crashes in work zones. 

The study results revealed shorter work zones have a higher number of upstream crashes 

compared to longer work zones (17). 

Li and Bai (2006) studied Kansas work zone crashes from 1992 to 2004, to compare 

fatal and injury crash characteristics. The results of this study showed head-on was the main 

collision type for fatal crashes, and rear-end was the major crash type for injury crashes.  

Male drivers were involved in 75% of fatal crashes and 66% of injury crashes in 

Kansas. Drivers between 35 and 44 years old, and older than 65, are the high-risk driver 

groups in work zones. Male drivers aged 25 to 64 were involved in 64% of all work zone 

crashes, which might be due to the fact that this age group tends to drive more so they have 

higher exposure to the work zones (18).  

A study by Li et al. (2012) on truck-related crashes in Kansas highway work zones 

indicated that trucks were involved in a high percentage of fatal crashes while passenger cars 

were mainly involved in injury crashes. About half of truck drivers were at fault in work 

zone fatal crashes. The maneuver before the crash for most of the truck drivers was straight 

following. The rear-end crash was the dominant type of crash for all severity types (19). 

Research was conducted by Ulman et al. (2006) to identify the effects of night work 

activity on work zone crashes in Texas. They investigated the change in crash likelihood for 
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active and inactive night and day construction work. Results showed higher crashes for active 

work zones for both night and day-time than inactive work zone periods. There was a higher 

percentage of rear-end crashes at night-time active work zones (20). 

Arditi et al. (2007) investigated crash characteristics of highway work zones by 

comparing daytime and nighttime construction activities. They studied fatal crashes to 

identify if there was any difference between night time and daytime construction. The 

lighting and weather conditions were included in the study as control parameters to 

determine their effects on the frequency of fatal crashes in work zones. The Kruskal-Wallis 

test was conducted to find if the number of fatal crashes and the number of people and 

workers involved in construction zones crashes significantly differ from nighttime to daytime 

conditions. This study concluded nighttime construction was more dangerous than daytime 

construction; however, weather condition variables had limited effects on this result (21).  

2.2.2 Work Zone Crash Types 

A number of research projects have examined crash data to identify crash types in 

work zones. The rear-end crash has been identified to be the most predominant work zone 

crash type for all crashes by the majority of previous studies (9, 11-12, 14). 

Rouphail et al. (1988) found rear-end crashes were increased by 50% during the 

roadway construction period. Hall and Lorenz research demonstrated rear-end crash 

percentage increased from 9% to 14% for the construction period (9).  

Garber and Zhao (2002) concluded rear-end and sideswipe crashes are the most 

frequent crash types at the advanced and transition areas of work zones while fixed object 

and angular crashes are more dominant at the work area and termination area (13). 
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Rear-end work zone crashes in Singapore was assessed by Meng and Weng (2010), 

which found rear-end crash risks increases with lane traffic flow rate and heavy truck 

proportion. The study also revealed higher rear-end crash risks for work zones with lane 

closures and suggested early merge as an effective method to reduce rear-end crash risk at 

merging point (22). 

A study by Daniel et al. (2000) identified head-on, angle, and single vehicle as the 

predominant types of fatal crashes in work zones (23). 

Most fatal crashes are multi-vehicle crashes. Head-on, angle-side impact, and rear-

end are the three most frequent collision types for the multi-vehicle crashes (12, 18).  

Li and Bai (2008) compared characteristics of fatal and injury crashes in work zones 

in Kansas. The study revealed head-on collision as the dominant type of fatal crashes while 

rear-end was the major crash type for injury crashes (24).  

Garber and Woo (1990) concluded work zone crashes were more likely to involve 

multiple vehicles than non-work zone crashes (12).  

2.2.3 Work Zone Crash Locations 

A work zone consists of advanced warning area, transition area, buffer area, activity 

area, and termination area. There are a number of research projects which evaluated the 

distribution of crashes within these areas. 

Activity area is the predominant location for all types of work zone crashes (13-14, 

25-26). However other research concluded differently. Nemeth and Migletz (10) study found 

higher crashes occurred in buffer area. Srinivasan et al. (2008) revealed higher crash 

proportion in advanced warning area (27). 
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Garber and Zhao (2002) concluded rear-end crashes are the predominant crashes 

within the work zone advance warning area, transition area, and activity area. However, 

angle crashes are significantly higher at the termination area (13).  

Chambless et al. (2002) studied typical characteristics of work zone crashes in 

Alabama, Michigan, and Tennessee and revealed that 63% of work zone crashes take place 

on interstate, US, and state highways, as compared to 37% of non-work zone crashes. The 

work zone crashes on 45 mph and 55 mph speed zones are 48% as compared to 34% of non-

work zone crashes, (28). 

Some studies also revealed most work zone crashes occur on rural interstate and state 

highways (14, 29). However, another study revealed contradictory findings. The Garber and 

Zhao (13) study revealed that urban highways have a higher proportion of work zone crashes 

compared to rural highways. Jin et al. (2008) study found no relationship between road 

functional class and crash distribution in work zones (30). The majority of fatal and injury 

work zone crashes occurred within 51-60 mph speed limit zones (18). 

2.2.4 Work Zone Crash Contributing Factors 

Many studies have been conducted to analyze work zone crash characteristics and 

their contributing factors. The findings of these studies indicate work zone crashes in 

different spatial locations share some common features and contributing factors. 

Li and Bai (2006) concluded inattentive driving, misjudgment, and disregarding 

traffic control are the top contributing factors for work zone fatal crashes (18).  

Chambless et al. (2002) study revealed 27% of work zone crashes were due to 

misjudging stopping distance and following too close in Alabama, Michigan, and Tennessee 

as compared to 15% for non-work zone crashes (28).  
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Lindly et al. (2002) similarly identified misjudging stopping sight distance and 

following too closely are the predominant causes of work zone crashes in Alabama according 

to 1994-1998 crash data. The study also found the ratio of drivers speeding in work zones 

were higher than non-work zone drivers (29). The results of some studies indicated following 

too close as the dominant contributing factor in work zone crashes (11, 14).  

Kumar et al. (2015) utilized a qualitative approach by interviewing 66 construction 

workers from several work zones in Queensland, Australia, to identify nature and 

contributing factors in work zone crashes. The survey results reveal excessive vehicle speed, 

driver aggression towards road workers, and driver distraction are the major contributing 

factors to work zone crashes (31).  

Li and Bai (2006) revealed driver inattention is the major cause for both fatal and 

injury crashes in work zones (18).  

A number of studies identified speed as a major contributing factor to work zone 

crashes (13, 32-34). Allpress et al. (2010) study found excessive speed as a major 

contributing factor for increasing driver’s risk of crash involvement at work zones in New 

Zealand (32). Sommers and McAvoy (2013) research revealed speed variance and congestion 

are typical causes of rear-end crashes in work zones (34).  

Bryden et al (1998) study showed impact with work zone traffic control devices 

caused about 33% of all work zone crashes (35). 

2.2.5 Temporal and Environmental characteristics 

Environmental factors such as lighting, weather, and surface conditions can all be 

contributing factors to unsafe driver behavior in work zones. 
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Work zone crash data for Smart Work Zone Deployment Initiative (SWZDI) was 

investigated by Akepati (2010) and revealed 75% of crashes occurred during daylight, and a 

majority of crashes (84%) occurred on a dry road surface (16). Two other earlier studies 

found work zone crashes were increased at night due to the higher possibility of lane closure 

at night (15 and 20).  

A study by Arditi et al. (2007) used Kruskal-Wallis test was conducted to find if the 

number of fatal crashes and the number of people and workers involved in construction zones 

crashes significantly differ in nighttime in compare to daytime conditions. This study 

concluded nighttime construction is more dangerous than daytime construction; however, 

weather condition variables have a limited effect on this result (21). In contrast, Dissanayake 

and Akepati (2009) found daylight and good weather are the most probable conditions for 

work zone crashes (36).  

The daytime off-peak hours (10:00 a.m. – 4:00 p.m.) are the most hazardous time 

period in work zones (18 and 31). 

In another study by Hall and Lorenz (1989) inclement weather conditions and bad 

roadway surface were found to have a significant impact on road work crashes (11). 

2.2.6 Driver Characteristics 

Past research indicated driver error as the main contributing factor to work zone 

crashes. The previous research on work zone crash causation indicate that speeding, 

inattentive driving, speed too fast for the condition, and following too closely were the most 

frequent driver errors associated with severe work zone crashes. Research on driver 

characteristics and behaviors found age, gender, and risky driving behavior such as speeding 

and aggressive driving are all contributing factors to highway work zone crashes. A number 
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of research quantified the proportion of human factors as the major contributing factor to 

more than 93% of all crashes on roadways (2-5).  

Rumar et al. research (1985) studied crash causation and showed the proportion of 

drivers, roadway, and vehicles that were major contributing factors of crashes through the 

well-known Venn diagram as shown in Figure 2.1.  

 

Figure 2.1 Proportion of crash causation (Rumar et al., 1985) 

As mentioned earlier, the study found human or driver error as contributing factor to 

93% of crashes, while roadway and vehicle factors with 34 and 12%, respectively have much 

lower proportion of crash causation. 

The proportions of crash causation mainly attributed to drivers as-studied by Rumar 

et al., were confirmed more recently by the NHTSA study of 2015. This study was based on 

the National Motor Vehicle Crash Causation Survey (3). Table 2.1 shows the result of critical 

reasons attributed to drivers, vehicle, and environment. 
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Table 2.1 Crash critical reasons attributed to driver, vehicle, and environment 

  Critical Reason  

Attributed to 

Estimated 

Number Percentage 

Driver 2,046,000 94% 

Vehicle 44,000 2% 

Environment 52,000 2% 

Unknown 47,000 2% 

Total 2,189,000 100% 

 

As shown in the table, 94% of related critical reason for crashes were attributed to 

drivers. Vehicle and environment each attributed only 2% to crash causation. 

A number of prior research studies identified human factor as the main contributing 

factor in roadway crashes. Although driver behavior has contributed significantly to crashes, 

it is the least understood factor. This is mainly due to limited information about driver 

behavior in our traditional crash data. Also we have many unreported and under-reported 

crashes which creates a significant limitation on our existing crash database.  

2.2.7 Summary of Findings 

A number of different research revealed contradicting results for the same work zone 

characteristics studied. Some studies revealed work zone crashes were more severe than non-

work zone crashes, while others found work zone crashes to be less severe. There were also 

studies which didn’t find any significant difference between work zone and non-work zone 

crashes. There were mixed results about the work zone crashes at night versus daytime. Some 

studies concluded construction was more dangerous at night compared to daytime, while 

other studies believed daytime and good weather conditions were most probable condition 

for work zone crashes.  
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There were also some disagreement on the most predominant location of work zone 

crashes. As some believed advance area as the predominant locations of work zone crashes 

while others found higher crashes occurred in activity area. Although a study found the 

buffer area as the most probable location of work zone crashes. 

However, there was strong agreement among many studies that found rear-end as the 

most predominant type of crash in work zones. Studies also found head-on was the major 

collision type of fatal crashes, while rear-end was the main crash type for injury crashes in 

work zones. Trucks were involved in more fatal crashes and passenger cars were involved 

more injury crashes in work zones. 

A number of studies concluded speeding, inattentive driving, following too closely, 

and misjudging stopping distance are among the major contributing factors to work zone 

crashes. Also speed variance and congestion were attributed to rear-end crashes in work 

zones. 

The majority of the previous research about work zone safety focused mainly on the 

descriptive statistics of crash data to examine the characteristics and to identify contributing 

factors to those crashes (8). Limited research has been conducted to develop specific models 

to link work zone crash characteristics and contributing factors. Models “partially” studied 

the effects of roadway, vehicle, driver, environment, and work zone configurations on work 

zone crash severities (8). 

There are a large number of factors contributing to work zone crashes but it is mainly 

believed that the major contributing factors are speeding, inattentive driving, and other 

unsafe driver behaviors, such as following too closely. Although driver behaviors have 

significantly contributed to the crash causation, it is the least understood factor. This is 
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mainly due to limited information about driver behavior in our traditional crash data. Most 

driver behavior information relies on a driver’s own statement or witness testimony, which 

could be inaccurate for various reasons. This indicates drivers’ contributing factors to crashes 

are not very well understood. 

The NDS data, which is a naturalistic observation of driving behavior, provide a 

unique opportunity to observe and model actual driver behavior and understand how they 

interact with roadway, vehicle, and traffic environment. The NDS can be utilized to develop 

models about driver’s daily normal driving behavior in order to understand some underlying 

causes of crashes and to identify how drivers negotiate work zones. 

2.3 Data Collection and Reduction 

The main data source to acquire safety critical and baseline events for work zones 

was the SHRP 2 InSight website (https://insight.shrp2nds.us/home/index). The website 

provide researchers with the SHRP 2 NDS data. There are different groups of variables that 

can be accessed through the website. Drivers, events, trips, and vehicles are the four different 

categories of data collected. Driver data includes age, gender, licensing age, prior traffic 

violation(s), annual miles driven, and driver behavior surveys. The event table provides NDS 

data at event levels such as crash, near-crash, and baseline. Trip information comprised 

average trip length, mean speed, acceleration, and so on. The vehicle data summarized 

vehicle information such as vehicle type, make, size, and age. The forward video for each 

event was available and accessible from the InSight website for researchers who obtained an 

Institutional Review Board (IRB) certificate.  

Due to the participation of human subjects in SHRP 2 NDS data, it is required by 

federal regulations (Title 45 CFR, part 46.102.f) to obtain IRB approval by completing the 
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National Institute of Health (NIH) web-based training course prior to the implementation of 

the research.  The analysis of data in this research complied with the data usage agreement 

that has been submitted to IRB and VTTI. The IRB approval is provided in Appendix A. 

Forward roadway views along with a set of criteria were used to determine if the 

coded events were actually work zone-related. Lane closure and the presence of construction 

equipment and workers were the most important criteria used to validate work zone-related 

events. The safety critical events were reduced to 148, which was further refined to 110 

events by selecting multi-lane urban and rural highways. Multi-lane urban and rural had the 

highest proportion among all work zone roadway classifications.  

A total 1171 baseline work zone-related events were initially identified from the 

InSight website. A total of 443 events were requested from VTTI and 420 baseline events 

were received. The baseline data were reduced to multi-lane urban and rural highway to be 

identical to roadway classifications selected for safety critical events. Finally, 89 baseline 

events were manually coded as work zone-related utilizing forward roadway view videos. 

The reduced baseline events were on active work zones. About 35 variables were extracted 

and coded from forward roadway views and time series data.  

2.3.1 SHRP 2 Study Sample Proportion 

The study data sample was investigated to confirm if it is representative of that for the 

NDS study. Figure 2.2 shows the proportion of drivers by age group and gender for the NDS 

study as compared to our study sample. 

Young (16-24) and middle (25-64) age female drivers are about the same proportion 

in both the NDS and the study sample. It is also the same scenario for male drivers as both 

young and middle aged drivers are about 45% in both samples. 
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Figure 2.2 Proportion of drivers by age group & gender for NDS and study sample 

The only difference is in old drivers as the proportion of older (65+) female drivers 

for the NDS is 46% compared to 26% for the study sample. The case is reversed for older 

male drivers, as the proportion of them in the study sample is higher with 74% as compared 

to 54% for the NDS study. 

 

Figure 2.3 Proportion of drivers by age group and gender for safety critical and 

baseline events samples 

The proportion difference between safety critical events and baseline events in the 

study sample has been investigated. Figure 2.3 reveals the proportion of drivers involved in 
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safety critical and baseline events by age group and gender. The data in the graph clearly 

indicates that the proportion of both female and male drivers involved in safety critical and 

baseline events are quite identical among all age groups. 

2.4 Methodology 

Initially a descriptive statistical analysis was conducted to study the distribution of 

work zone safety critical and baseline events over numerous variables. The main factors for 

each variable which were responsible for the high proportion of safety critical events were 

identified to determine major driving behaviors that contributed to the occurrence of the 

safety critical situations.  

Secondly, to identify the influence of the major contributing factors to the occurrence 

of the event, predictive models were produced to define the relationship between explanatory 

variables and the outcome of the event. Logistic regression was implemented to produce 

models which predicted the probability of safety critical event occurrences at work zones by 

major contributing factors. The multiple regression analysis was used to predict the event 

type outcome by using nominal or continuous explanatory variables. 

2.4.1 Descriptive Statistical Analysis Results 

Descriptive statistics have been utilized to analyze NDS data in work zones. It was 

necessary to identify the characteristics of the safety critical events that drivers were involved 

in and then determine the factors that contributed to the occurrence of safety critical 

situations as compared to normal work zone driving (baseline). 
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2.4.1.1 Safety Critical Events Characteristics 

Safety critical events are the events that are coded as crash or near-crash in the NDS 

SHARP 2 database. The distribution of safety critical events is shown in Figure 2.4. 

An analysis of the data reveals subject drivers were involved in 62% rear-end event 

and 2% were rear-ended from back. Sideswipe with 25% was the second highest safety 

critical event type followed by conflict with construction equipment and road departure 5% 

each. The angle crash or near-crash is 2% of all safety critical events. 

 

Figure 2.4 Safety Critical Events Distribution 

The results here are mostly in line with literature findings, which show rear-end as a 

predominant crash type in work zones. Rear-end events were further studied to find the 

predominant factors in driving maneuvers, intersection influence, and work zone status 

which were associated to those events. On the driving maneuvers, going straight with 81%, 

merging 10%, and changing lanes 7% were the predominant factors. The presence of 

equipment with 66% and the presence of equipment and workers with 19% were the main 
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work zone statuses associated with rear-end events. Interchanges at 20% and intersection at 

17% had influence on the occurrence of rear-end events. 

2.4.1.2 Contributing Factors to Safety Critical Events 

The study looked at driver, environmental, roadway, and vehicle factors that 

contribute to work zone crashes and near crashes. Figure 2.5 and 2.6 illustrates the age and 

gender distribution of the drivers involved in safety critical events and baseline conditions. 

 

Figure 2.5 Event type by age group 

Drivers were divided into three age groups: Young aged (16-24), middle aged (25-

64), and old aged (65 and older). The young aged drivers had the highest percentage at 61% 

and 55% for safety critical and baseline events, respectively. The middle aged drivers were 

involved in 25% of safety critical events and 31% of baseline events. The older drivers’ 

proportion was about 14% for both safety critical and baseline events. 

Female drivers’ involvement in safety critical events was more than 8% higher than 

that for male drivers (52% and 48% for female and male drivers respectively). Young 

drivers’ involvement in safety critical events was 12% higher compared to baseline for the 

same age group, while middle age drivers’ involvement in safety critical events was 24% 
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lower compared to baseline for that age group. The age distribution of our sample was very 

similar to that for all work zone-related drivers. 

 

Figure 2.6 Event type by driver gender 

Figure 2.7 shows driving maneuver prior to incidents. About 16% more drivers were 

going straight prior to the baseline events compared to safety critical events (87% compared 

to 74%). Changing lane and merging were twice as high for safety critical as compared to 

baseline events. Other maneuvers, including passing, turning, and negotiating curves, were 

also more than two times higher for safety critical events compared to the baseline.  

 

Figure 2.7 Driving maneuver prior to the event 

Driver behavior and contributing factors are shown in Figure 2.8 for the safety critical 

situations and normal work zone driving. Speeding is a major contributing factor to safety 
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critical events at 23% which is about three times higher than that for baseline at 7%. As can 

be seen from the chart, distractions with 22% and cell phone distraction with 15% are very 

important contributing factors to safety critical events. 

 

Figure 2.8 Diver behavior and contributing factors by event type 

Distractions for baseline were derived from secondary tasks as the driver behaviors 

for baseline events were not populated appropriately. The distracted percentage for baseline 

is relatively high as it includes interaction with passengers, talking, and singing, which were 

considered as distraction based on the variable description in the Insight SHARP 2 database.  

The factors which are considered secondary tasks to driving are presented in Figure 

2.9. The secondary task data is complementary to driving behaviors which will help us to 

identify what drivers were actually doing that contributed to safety critical event 

involvement. The secondary task data indicate 56% of drivers engaged in secondary tasks in 

safety critical events. Again secondary task data clearly reveals distraction as a major 

contributing factor to safety critical events at 36% which consists of 17% of cell phone 

distraction. The distractions that contributed to safety critical events are more than four times 
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than that in baseline events. Interaction with passenger is 20% for baseline which was twice 

as high as that for safety critical events. 

 

Figure 2.9 Secondary task distribution by event type 

The distribution of lane closure by type and location are shown in Figure 2.10. The 

most important finding of this analysis is lane shift with no shoulder represents 29% of 

baseline events which is more than 3 times of that in safety critical events. Right lane closure 

at 32% for safety critical events has a higher proportion than that for baseline events at 25%.  

 

Figure 2.10 Lane closure type and location by event type 
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The percentage of shoulder closures on the right or left is pretty comparable for safety 

critical and baseline events. Left lane closure for baseline is relatively higher than that for 

safety critical events. Other lane closures consist of closures with 2 or more lanes. It is 15% 

for safety critical events compared to 4% for baseline, which is more than 3 times higher. 

The analysis results for traffic conditions in work zones are illustrated in Figure 2.11. 

 

Figure 2.11 Traffic condition in work Zones by event type 

Multi vehicle free flow proportion is 64% for baseline compared to 37% for safety 

critical events. In contrast, multi vehicle restricted flow is 46% higher for safety critical 

events compared to baseline. Single vehicle free flow is 6% for safety critical event and 1% 

for baseline.  

Additional variables were coded and reduced to identify safety critical event 

causation and major contributing factors which are shown in Table 2.2. Pavement surface 

condition was dry 87% and 94% for safety critical events and baseline respectively. The 

proportion of safety critical events on wet pavement was more than two times of that for 

baseline.  

64%

35%

1%

37%

56%

6%

MV free flow MV restricted flow SV free flow

Baseline

Safety critical event



www.manaraa.com

60 

 

 

The proportion for number of passengers for baseline was slightly higher than that for 

safety critical events. The effect of bad weather conditions was very small for both safety 

critical and baseline events.  

The proportion of urban highway contributed to safety critical events was 65% 

compared to 30% for baseline events which explains a very high proportion of rear-end 

situations. Rural highway contributed to 35% and 69% of safety critical and baseline events 

respectively.  

Straight and level roadway had higher proportion for baseline with 93% compared to 

84% for safety critical events while curves with 16% was more than twice as much for safety 

critical events than baseline.  

Intersection and interchanges had a very high influence on the occurrence of safety 

critical events with 42% compared to only 6% for baseline events.  

Speed variation which is the network speed standard deviation was one of the major 

contribution factors to the safety critical events. Standard deviation greater than 4 mph and 

less than 26.5 mph was 90% for safety critical events while it was 14% for baseline, a huge 

speed variation for safety critical events. Speed limit greater than 60 mph was higher for the 

baseline than it was for the safety critical events. 

This might be due to the fact that GPS positional information were missing for 41% 

and 24% for safety critical and baseline events respectively. Therefore the speed limits for 

those events were not obtained. 
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Table 2.2 Additional variables contributing factors 

Variable 
Safety Critical Events 

Contributing Factors 

Baseline Events       

Contributing Factors 

Number of 

Passenger 

Zero (75%), One (22%), Two 

(3%), Four (1%) 

Zero (65%), One (29%), Two 

(3%), Three (2%) 

Weather 

Condition 

No adverse condition (91%), 

Raining (5%), Mist (4%) 

No adverse condition (94%), 

Raining (4%), Mist (2%) 

Pavement 

Condition 
Dry (87%), Wet (13%) Dry (94%), Wet (6%) 

Lighting 

Condition 

Daylight (77%), Darkness, lighted 

(14%), Dusk (7%), Darkness, not 

lighted (2%) 

Daylight (75%), Darkness, 

lighted (11%), Dusk (5%), 

Darkness, not lighted (9%) 

Roadway  

Classification 

2-lane urban highway (36%), 3-

lane urban highway (29%), 2-lane 

rural highway (22%), 3-lane rural 

highway (13%) 

2-lane rural highway (49%), 3-

lane urban highway (21%), 3-lane 

rural highway (20%), 2-lane 

urban highway (9%) 

Roadway 

Geometry 

Straight (84%), Curve right 

(10%), Curve left (6%) 

Straight (93%), Curve right (4%), 

Curve left (3%) 

Roadway 

Grade 

Level (83%), Grade up (10%), 

Grade down (6%), Hillcrest (2%) 

Level (93%), Grade down (5%), 

Grade up (2%) 

Construction  

Activity 

Equipment (70%), Equipment and 

workers (15%), None (13%), Not 

visible (3%) 

Equipment (71%), Equipment 

and workers (26%), Not visible 

(3%) 

Construction  

Sign present 

Yes (58%), No (22%), Not visible 

(20%) 
Yes (69%), Not visible (31%) 

Intersection 

Influence 
No (58%), Yes (42%) No (94%), Yes (6%) 

Speed Limit 

<=40 mph (18%), >= 45 mph and 

<= 55 mph (52%), >= 60 mph 

(30%) 

<=40 mph (3%), >= 45 mph and 

<= 55 mph (49%), >= 60 mph 

(48%) 

Speed  

Variation 

(SD) 

< 2mph (3%), >=2 mph and <4 

mph (7%), >=4 mph and <=7.5 

mph (21%), >=7.6 mph and 

<=26.5 mph (69%) 

< 2mph (55%), >=2 mph and <4 

mph (31%), >=4 mph and <=7.5 

mph (14%) 
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2.4.2 Logistic Regression Modeling 

Logistic regression or logit model is used to model work zone event type outcome. In 

the logit model, the log odds of the outcome is modeled as a linear combination of predictor 

variables. Odds are defined as ratio of the probability of the occurrence of safety critical 

event versus normal work zone driving condition (baseline). The logistic regression model is 

expressed as follow: 

Logit (Y =1|X) = log (odds) = log (
𝑃

1−𝑃
) = 𝛽o + β1X1 +···· βkXk 

 

Y: Odds of a safety critical event occurs 

P: Probability of safety critical event occurs 

βo: Model intercept 

βk: Regression Coefficient 

Xk: Explanatory variable 

Maximum likelihood estimate can be used to estimate parameters combinations that 

maximize the probability of the observed outcome. The null hypothesis states that all 

coefficient of predictors are equal to zero. If the predictors have influence on the outcome 

result, the test result is significant at 0.1 level and the null hypothesis will be rejected. The 

0.1 significance level was used to enable us to include more explanatory variables in the 

model which could improve overall the predictive ability of the model.  

From the descriptive statistical analysis, it can be concluded that speeding and 

distractions are the main driver contributing behaviors to the outcome of the events. 

Additionally, speed variation, intersection influence, urban area work zones, and driver age 

and gender are the major contributing factors.  
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The logistic regression models produced to find the impact of predictor variables on 

the outcome of the event. The major explanatory variables and response variable descriptions 

and coding levels used in the model are shown in Table 2.3. 

Table 2.3 Variable definition and coding for the model 

Variable Description Level Value 

Event  

outcome 
Event type 

Baseline 0 

Safety critical 

event 1 

Driver  

Behavior 

Aggressive driving and Exceeding posted 

Speed 

Not-Speeding 0 

Speeding 1 

Distraction 
No-Distraction 0 

Distraction 1 

Speed  

variation 
Speed standard deviation Continuous 

 
Intersection  

Influence 
Under influence of Intersection, Interchange 

No 0 

Yes 1 

Urban  

work zones 
Work zone is in urban area 

Rural 0 

Urban 1 

Gender Drivers gender 
Male 0 

Female 1 

 

The model results of predictor estimation for work zone event type are presented in 

Table 2.4. The effect of all continuous and categorical variables was tested to develop the 

best model that fit the data. All variables remained in the model are significant at 90% 

confidence level. This model predicts the probability of the outcome of an event in the work 

zone with six predictors (explanatory variables).  

All six explanatory variables have positive impact on the occurrence of an event 

outcome since the coefficient estimates are positive for all six predictors. When a driver is 

speeding, the probability of the occurrence of a safety critical event is higher than that when 

a driver is not speeding. Distraction and gender with positive coefficient are the other driver 

behavior which positively contributed to the outcome of an event. Work zones in urban areas 
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Table 2.4 Logistic regression model parameter estimate for work zone event outcome 

Parameter Estimate 

Variable Coeff. Estimate Std. Error Chi Square Prob. > Chi Sq. 

Intercept  -7.437 1.382 28.95 <.0001 

Speeding 2.463 0.907 7.37 0.0066 

Distraction 1.186 0.639 3.44 0.0636 

Speed variation 0.928 0.176 27.7 <.0001 

Interchange/ 

Intersection influence 
1.751 0.822 4.54 0.0331 

Urban area 2.434 0.673 13.09 0.0003 

Gender 1.227 0.682 3.24 0.0721 

 

also have a high positive coefficient which indicates the probability of an event to be a safety 

critical is higher in urban area work zones compared to rural areas. Interchanges or 

intersections also positively affect the outcome of an event with relatively high coefficient. 

Speed variation is also a significant explanatory variable in determining the outcome of an 

event. All the explanatory variables in the model are significant at 90% confidence level. 

Predicted logit model for work zone safety critical events can be expressed as: 

= -7.437 + 2.463 * (Speeding) + 1.186 * (Distraction) + 0.928 * (Speed Variation) +  

    1.751 * (Interchange/Intersection influence) + 2.434 * (Urban) + 1.277 * (Gender) 

Odd ratios were developed to interpret these coefficients and to quantify the 

magnitude of the predictors in predicting the outcome of an event in work zones as shown in 

Table 2.5.  

The odd ratio indicates the ratio of probability of the occurrence of safety critical 

events to the probability of the non-occurrence (baseline). 

The ratio of speed is 11.73. It indicates that the probability of the occurrence of a safety 

critical event in work zones is 11.73 times higher than the probability of an occurrence of a 

baseline event when a driver is speeding. 
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Table 2.5 Odds ratio for work zone event outcome predictors 

Odds Ratio       

Variable Odd ratio 5% 95% 

Speeding 11.73 2.15 80.2 

Distraction 3.27 0.98 12.51 

Speed variation 2.53 1.88 3.8 

Interchange/Intersection 

 influence 
5.76 1.25 33.34 

Urban area 11.4 3.34 48.7 

Gender 3.41 0.96 14.57 

 

The probability of the occurrence of a safety critical event is 3.27 times greater than 

that for the baseline if a driver is distracted. For gender variable, the probability of a safety 

critical event occurrence is 3.41 greater for female drivers compared to a baseline event. The 

probability of an occurrence of a safety critical event is 5.76 times higher than that for a 

baseline event at the proximity of an interchange or an intersection. The probability of being 

involved in a safety critical event is 2.53 times greater than that for a baseline event when 

speed variation is high at work zones. The speed variations were mainly due to the restricted 

flow at work zones due to the lane change, merging, and sudden stops. 

There is a big spread between 5% and 95% confidence level which is due to the small 

sample size. For examples, speed variable with 35 observations is spread between 2.15 and 

80.2. This means we are 95% confident that the probability of the occurrence of a safety 

critical event is between 2.15 and 80.2 times greater than that for a baseline event if a driver 

is speeding. As it can be seen from table 4, the spread 5% to 95% confidence level is much 

lower for speed variation because that variable includes 199 observations. 
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2.5 Summary and Conclusions 

The objective of this research was to investigate the characteristics of safety critical 

events and compare that to the baseline events to identify the main contributing factors 

associated with work zone safety critical events. Previous research mainly found that the 

major contributing factors are speeding, inattentive driving, and following too closely. The 

researchers also found driver behavior significantly contributed to the crash causation and 

revealed human factor contributed to about 93% of crashes. Although driver behavior is the 

main contributing factor, it is the least understood factor attributed to crash causation.  

The NDS data provide a unique opportunity to observe and model actual driver 

behavior and understand how they interact with roadway, vehicle, and traffic environment. 

The NDS data was utilized to provide insight into drivers’ daily normal driving behavior in 

order to understand some underlying causes of crashes and to determine how drivers 

negotiate work zones. The NDS provided near-crash data which have never been reported in 

traditional crash data.  

The descriptive statistics revealed a number of important findings in this research. 

The rear end crashes attributed to more than 67% of safety critical events. Young drivers (16-

24) as well as female drivers were over-represented in safety critical events. The descriptive 

statistics also revealed 56% of drivers were engaged in secondary tasks before the occurrence 

of safety critical events. Distractions and speeding accounted for 60% of driver behaviors 

that contributed to safety critical events. Right lane closures contributed to the highest risk in 

safety critical events and lane shift with no shoulder contributed the least to the safety critical 

events compared to normal driving condition. 
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The logistic regression model was used to predict the outcome of an event based on 

various identified explanatory variables. The effects of all continuous and categorical 

variables were tested to develop the best model fitted the data. The model found 6 out of 18 

tested variables to be statistically significant. All variables remained in the model are 

significant to a 90% confidence level. The model predicted the probability of event outcome 

based on six predictors. Speed, distractions, speed variations, interchange/intersection, urban 

area, and gender were significant and all positively correlated with the occurrence of the 

safety critical event in work zones. The odd ratios provide insight about the magnitude of the 

predictors and found speeding with a value of 11.7 as the highest contributing factor to the 

event outcome. 

In conclusion, this research used the SHRP 2 NDS data to determine safety 

implications associated with crashes and near-crashes (safety critical events) in work zones. 

Analyzing crash data is not a new idea, but the NDS data provided researchers with 

important additional data about traffic conflicts, normal driving behavior, risk perception, 

and much more. The NDS reformed crash data strategies by providing near crash data, the 

information which was never reported in traditional crash reports. This study found that when 

speeding, the probability of getting involved in safety critical events is 11.7 times higher than 

baseline. The probability is 3.3 times higher when distracted. The model also revealed the 

probability of female drivers getting involved in a safety critical events is 3.4 times higher 

compared to baseline. Similarly, the probability of getting involved in safety critical events is 

higher in urban areas and in the vicinity of interchanges or intersections. Higher speed 

variations also was an important contributing factor to increase the probability of safety 

critical events involvement.  
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The findings of this research had important suggestions for transportation agencies. It 

is recommended to prepare a comprehensive work zone safety plan with appropriate and 

effective safety measures to get drivers’ attention and reduce traffic speed in and about work 

zones. There is a need to identify the effectiveness of various safety measure devices and 

layouts applied in work zones to encourage drivers to slow down and safely navigate the 

work zone. 

 It is also recommended to educate and inform drivers on the risk of distractions, 

especially in locations such as work zones where unexpected conflicts exist and produce high 

cognitive workloads for drivers. The distractions risk awareness should more specifically 

target female drivers who were involved with a higher proportion of secondary tasks as data 

indicated. 

2.5.1 Limitations 

The main limitation of this research was sample size. The small sample size of 110 

safety critical events created some hurdles in building statistical inferences from the logistic 

regression model. Some of the variables in work zone related-data were combined for the 

purpose of analysis due to small sample size and diversity of categories in each variable. 

Small sample size is a main issue in analyzing some of the predominant factors in our data 

set. For example, all type of cell phone-related distractions were combined (e.g. talking, 

texting, browsing, dialing, holding, locating, reaching, and other). Also, the effect of texting 

and cell phone usage on the outcome of an event could not be verified due to the small 

sample size. 

Baseline events were not matching comparable work zone configurations, as the 

baseline events were coded for only 21 seconds duration. The segment of work zones coded 
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could occur in any area of the work zone (upstream, work area, or downstream). Therefore, 

none of the baseline events include full driving trace from the upstream all the way 

throughout the work area and termination of the work zone.  

The baseline data is limited to 89 observations including multi-lane highways only 

due to time and budget constraints. This may not be representative of all the SHARP 2 NDS 

baseline data and may affect our results.  

All in all, sample size was the major limitation of this study. Due to the scarce 

number of the safety critical events in the NDS data, it is recommended to use crash 

surrogates to model the safety impacts associated with work zones. As this research found 

speed as the major contributing factor to the safety critical events, it can be used as a crash 

surrogate. The NDS data revealed speed data as the most complete collected variable to be 

used as a crash surrogate.  
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CHAPTER 3.  MULTIPLE CHANGEPOINTS DETECTION OF SPEED 

TIME SERIES TRACES IN WORK ZONES USING SHRP 2 

NATURALISTIC DRIVING STUDY DATA 
Modified from a paper to be submitted to the Transportation Research Record 

Hossein Naraghi and Omar Smadi 

Abstract 

The presence of a work zone increases disturbances to traffic flow and produce high 

cognitive workloads for drivers which can increase the safety risks. There was an increase of 

about 11% in work zone-related fatalities from 2010 to 2014, despite a small decrease in non-

work zone-related fatalities in the U.S. (1). Work zone safety is a major concern for 

construction workers, travelling publics, and transportation safety professionals. Work zone 

impacts on safety creates a strong need to protect road users and construction workers. 

Speeding considered to be one of the main unsafe driver behaviors elevating the 

safety risks in the work zone. The Federal Highway Administration (FHWA) crash facts 

indicated speeding as a contributing factor to 28% of work zone crashes in 2014. A series of 

countermeasures have been used to attract drivers’ attention to comply with work zone 

conditions and reduce their speeds. There is limited information about which safety features 

are the most effective in accomplishing this objective. 

It is essential to learn how drivers react to various safety features throughout the work 

zone in order to find the features’ effectiveness. Due to the presence of multiple safety 

features throughout the work zone, drivers may react differently to each measure, which 

creates a changepoint in speed time series data. Changepoint analysis is a statistical tool 

designed to achieve homogeneity within time series data. Multiple changepoints detection, 

also known as time series segmentation, is basically finding a time instance when statistical 

properties of data change.  



www.manaraa.com

74 

 

 

The speed trajectory time series data from SHRP 2 work zones at a rate of 0.1 

seconds (10 HZ) were used to develop changepoint models by utilizing Pruned Exact Linear 

Time (PELT) algorithm to accurately and efficiently estimate the location of changepoint in 

mean speed reacting to safety features such as DMS, speed limit signs, speed feedback signs, 

flashing arrows, merge signs, and so on. The model created mean speed data partitioned into 

regions in reaction to different safety measures. 

The analysis revealed promising results regarding driver’s reaction to different safety 

measures in work zones by identifying prime changepoint locations in mean speed time 

series data. This method helped to identify the effect of safety features on changing drivers’ 

speed behavior and subsequent modeling. 

3.1 Introduction 

The presence of a work zone increases disturbances to traffic flow and produces high 

cognitive work load for drivers, which can increase the safety risks. According to the 

National Work Zone Safety Clearinghouse, there was an increase of about 11% in work 

zone-related fatalities from 2010 to 2014, despite a small decrease in non-work zone-related 

fatalities in the U.S. (1). Work zone safety is a major concern for construction workers, 

travelling publics, and transportation safety professionals. Work zone impacts on safety 

creates a strong need to protect road users and construction workers.  

 There are a large number of factors contributing to work zone safety, but it is mainly 

believed that the major contributing factors are speeding, inattentive driving, and other 

unsafe driver behaviors. 

Transportation agencies make extensive efforts to lower the safety impacts of work 

zones on road users and construction workers through effective planning, scheduling, and 
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operating mechanisms (2). Therefore, the knowledge of contributing factors to work zone 

crashes and a detailed understanding of associated risk factors in work zones is vital to 

making informed decisions on providing the appropriate safety strategies and 

countermeasures.  

Past research indicated significant progress has been made in work zone crash 

frequency, but the major challenge is the lack of usage of more advanced models due to the 

deficiencies of data associated with work zones (2-5). Accurate work zone crash data are 

scarce as studies have indicated. Most studies solely rely on crash data derived from police 

crash reports. The crash reports are subject to a number of issues such as missing data, under-

reporting, and incomplete work zone data. Also, whether a crash is coded as work zone-

related depends mainly on an officer’s interpretation. In some cases, work zone traffic 

control may be present but the work zone was not active when the crash occurred. In other 

situations, the impact of a work zone might extends beyond the work zone boundaries such 

as congestion or queuing upstream of the work zone, but the crash is not coded as work zone-

related.   

Drivers react to the presence of a work zone’s advanced warning sign, merge sign, 

lane closure sign, and other countermeasures such as DMS, flashing arrow, speed limit, 

speed feedback, and similar signs. These countermeasures tend to get drivers’ attention to 

reduce their speed and react to signage, which help them safely traverse the work zone area. 

It is essential to learn how drivers react to various measures throughout the work zone in 

order to find countermeasures’ effectiveness. Due to the presence of multiple signage and 

countermeasures throughout the work zone, drivers may react differently to each measure, 

which creates a change-point in speed time series data.  
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Changepoint analysis is a statistical tool developed to achieve homogeneity within 

time series data. This can be achieved by partitioning the time series data into a number of 

homogeneous segments. Multiple changepoints detection, also known as time series 

segmentation, is basically finding a time instance when statistical properties of data change. 

Multiple changepoint analysis is an appropriate method for analyzing speed time 

series data from SHRP 2 NDS to identify when the statistical property of mean speed 

changes. Multiple changepoint models can be utilized to accurately and efficiently detect the 

abrupt changes in mean speed associated with multiple safety measures applied in work 

zones. 

3.1.1 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest and most comprehensive driving-based research 

study ever conducted. NDS is designed to observe driver’s daily driving behavior in a natural 

setting environment with no experimental control. The Virginia Tech Transportation Institute 

(VTTI) led this project implementation and coordination. More than 3,100 female and male 

drivers aged 16 to 98 were recruited in six unique and geographically distributed sites (New 

York, Florida, Washington, North Carolina, Indiana, and Pennsylvania). The participants’ 

vehicles were equipped with a Data Acquisition System (DAS), which consists of sensors, 

cameras, a Geographic Positioning System (GPS), vehicle network, lane tracking system, 

accelerometers, eye-tracking system, and data storage. The DAS sensors collected data such 

as speed, GPS, and acceleration, while four cameras collected forward, rear, driver face, and 

over the shoulder videos. Over 3,100 drivers made over 5 million trips over the two-year 

study period, resulting in more than 30 million data miles and 4 million gigabytes of data. 

NDS collected a variety of variables regarding driver’s daily driving behavior without any 
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experimental control. Most of the variables were collected at high frequency (10 HZ), which 

is every 0.1 second (6). 

3.1.2 Background on SHRP 2 Roadway Information Database 

The Roadway Information Database (RID) was conducted to collect roadway 

information data for the roads driven by drivers in SHRP 2 NDS. The Center for 

Transportation Research and Education (CTRE) at Iowa State University led the 

implementation and coordination of the project, which used mobile data collection vans to 

collect about 12,500 center line miles of roadway data elements in the six NDS sites. In 

addition, other existing roadway data from government, public, and private sources, as well 

as supplemental data, were utilized to populate a roadway element dataset linkable to NDS 

trips to support a comprehensive safety assessment of driver behavior. The identified 

roadway data elements included information on roadway alignment, number of lanes, lane 

type and width, intersection types and location, lighting, signage, median type, barriers, 

rumble strips, and other features. The RID integrated 511 data provided by states with 

roadway data that was collected throughout NDS study locations. The integrated 511 data 

were the primary source of identifying work zone locations and duration (7). 

3.2 Literature Review 

Limited research has been conducted to develop models on the effectiveness of speed 

reduction safety measures in work zones. Work zones are creating change to traffic patterns, 

which require speed reductions. The proper usage and placement of traffic control devices 

are an important part of every work zone management plan where the safety of construction 

workers and the traveling public is the major concern of transportation agencies. The 
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National Highway Transportation Safety Administration (NHTSA) identified speeding as the 

major contributing factor in 30 percent of fatalities (8). The FHWA crash facts indicated 

speeding as a contributing factor to 28% of work zone crashes in 2014 (9). Speeding is 

clearly a major contributing factor to work zone crashes (10, 11). It has raised awareness on 

the negative effects of speeding in work zones, which increased emphasis on reducing speed 

and enforcing compliance with work zone speed limits. In order to determine the impact of 

safety measures on reducing vehicle speed and attracting drivers’ attention, a literature 

review has been conducted to find the major findings associated with speed management in 

work zones.  

Prior research revealed the use of signs to reduce the speed of traffic through work 

zones had different ranges of effectiveness. It depended on various factors such as geometry, 

sight distance, and the posted speed limit at a work zone location (12). The effectiveness of 

the speed reduction signs can sometimes be varied for unknown reasons that can be mainly 

attributed to driver behavior, which has not been truly investigated. 

Research in identifying the effectiveness of traffic control devices in work zones 

indicated the most effective measures in reducing mean speed and speed variance are speed 

display signs, flaggers, and automated radar detections with citations issued to vehicle 

owners. On the other hand, pavement markings, signs, and other standard traffic control 

devices were find to be ineffective in reducing vehicle speed in work zones (13-17).  

Studies on the effectiveness of Changeable Message Signs (CMS) in reducing speeds 

and informing traffic about upcoming work zones are more effective than traditional work 

zone warning sign (18, 19). A study by Zech and Mohan (2008) measured the effect of three 

commonly used CMS in reducing vehicle speeds in work zones. The study recorded the 
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speed of 180,000 vehicles on Interstate 90 and found the “WORK ZONE/ MAX SPEED 45 

MPH/ BE PREPARED TO STOP” message was effective in reducing the vehicle speeds 

between 3.3 and 6.7 mph. The study concluded a properly selected CMS message can 

significantly reduce traffic speeds in work zones (20).  

Li and Bai (2011) used a CMS at 250, 750, and 1,250 feet from a work zone 

displaying “WORK ZONE AHEAD SLOW DOWN.” This revealed a CMS will be more 

effective in reducing vehicle speed if placed between 556 to 575 feet from the work zone. 

Alternative messages on CMS, such as “YOUR SPEED IS ## MPH” changing to “SLOW 

DOWN,” followed by “MIMIMUM FINE $200,” had positive effects on getting drivers’ 

attention to reduce their speed. The results indicate the percentage of drivers who drive 5, 10, 

15, 20, and 25 miles over the speed limit were reduced by 20, 20, 10, 3, and 0.3 percent, 

respectively (21). 

Dynamic speed signs, which can be trailer mounted or mounted on a permanent 

location such as a light pole, can use laser detectors to measure the speed and sign display the 

approaching vehicles’ speed to drivers. Studies have determined that the use of dynamic 

speed sign in work zones can reduce a vehicle’s speed by as much as 5 mph (22, 23). Several 

other studies indicated speed reductions ranged between 1 and 8 mph in upstream of the taper 

area had greater effectiveness within the work area, reducing speed from 3 to 6 mph (19, 24-

27). The Petsi and McCoy’s study results revealed a positive impact on the average speed 

reduction for the first week, but the sign effectiveness was reduced during the second week 

(28). 

The presence of a speed photo enforcement van in a work zone, which has the same 

function as red light cameras, was successful in lowering vehicle speeds from 6.4 to 8.4 mph.  



www.manaraa.com

80 

 

 

In a different study, it was effective in reducing the speed by as much as 7.9 and 6.6 

mph for cars and heavy vehicles, respectively (29). 

The use of speed trailer along the side of an urban road, which flash the speed if the 

vehicle is traveling over the speed limit, was effective in reducing speeds by up to 2 mph 

(29).  

The vast majority of the past research looked at the effectiveness of a single speed 

countermeasure in a work zone. Hildebrand and Mason (2014) evaluated the effectiveness of 

safety measures in three different rural work zones with a semi-controlled environment in 

Canada. Speed data were collected at three spots, including 500 m upstream, 75 m upstream, 

and immediately adjacent to activity area to approximate the speed profile of vehicles 

approaching. The safety measures identified and tested were Floating Speed Zones (FSZ), 

Traffic Control Person (TCP), Narrow Lanes, Radar Speed Display Board (RSDB), Variable 

Message Sign (VMS), and a Fake Police Vehicle. These traffic control measure were 

singularly and collectively evaluated to identify the most effective measure(s) in slowing the 

traffic through the identified work zones. The study concluded a combination of TCP and 

FSZ had the greatest effect in speed reduction by 23 km/h. The Fake Police Vehicle and FSZ 

and the combination of RSDB and FSZ both made the traffic slow down by an average of 19 

km/h (39).  

A number of research studies were conducted to evaluate speed management 

strategies and effectiveness in highway work zones. Many of the past studies were conducted 

in a controlled environment and have produced mixed results in identifying the speed 

countermeasure’s effectiveness. The majority of previous research collected vehicle speeds 

using roadside radar guns and road tubes at a limited number of locations, then approximated 
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speed profile based on a few observations. A series of countermeasures have been used to 

attract drivers’ attention to comply with work zone conditions and reduce their speeds. There 

is limited information about which safety features are the most effective in attracting drivers’ 

attention in work zones. Past research indicated the effectiveness of the speed reduction 

measures can sometimes have considerable variations for unknown reasons. These unknown 

reasons can be mainly attributed to driver behavior which has not been truly investigated. 

The NDS developed and collected by the SHRP 2 provide a unique opportunity to observe 

actual driver behavior and understand how they react to a series of safety measures intended 

to get their attention in work zones.  

3.3 Data Descriptions 

Data for this chapter were acquired mainly from the SHRP 2 NDS and the SHRP 2 

RID. The NDS collected time series data utilizing the Data Acquisition System and video 

data collected by 4 cameras (6). This study uses vehicle speed time series data attributed to 

work zones. As speeding has been identified as one of the major contributing factors to work 

zone crashes, it is very important to observe and understand how drivers react to multiple 

safety measures applied in work zones to get their attention and reduce their speed.  

The data used in this study went through a quality assurance process. Since most of 

the data were collected from sensors in real world driving environments, missing data were 

observed as one of the main issues. In order to control and assure data quality in the analysis, 

the percentage of missing data were summarized for each identified speed trace in a work 

zone. The trace with more than 25% of missing network speed data were removed from the 

dataset. Speed traces with missing values were interpolated assuming a constant increase or 

decrease.  
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3.3.1 Data Collection and Data Reduction 

The major effort on the data collection part of this research was identifying work zone 

locations within SHRP 2 data. The RID contains 511 data for the most states involved in 

NDS for the duration of study (October 2010 to November 2013). The 511 data and collected 

variables were very different among the states. A major field in 511 data that contain 

information about the potential work zones was the traffic event description. This field was 

queried for potential work zones by using key words such as “road work”, “lane closure”, 

“construction”, “maintenance”, “cross over”, or “head-to-head”. There were about two 

million records that needed to be searched for the potential work zones. The RID did not 

have 511 data for the state of Indiana, so this state was not included in the analysis.  

The 511 data also contain information on the beginning and end of traffic events. 

Based on that, the duration of events which were work zones in our case were calculated. The 

work zones with durations of less than three days were removed due to the low possibility of 

having sufficient number of NDS time series traces for the short term work zones. As a 

result, 9,290 potential work zones were identified. The identified work zones were overlaid 

on NDS trip density data and were mapped to the corresponding roadway link ID in the RID. 

The identified locations for 9,290 potential work zones were sent to VTTI to acquire the 

number of NDS time series traces, unique drivers, and driver demographic data associated 

with the links of interest that occurred within the duration of work zones. 

VTTI provided a list of potential trips associated with the links of interest along with 

driver information on those trips. The data were examined and work zones with at least 15 

potential trips were selected, resulting in 1,680 potential work zones. The next step was 

requesting time series data associated with identified potential work zones. The estimation of 
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the physical extent of each potential work zone was needed to increase the likelihood that the 

actual work zone was included. For this purpose, the identified roadway links were mapped 

to RID and the corresponding link extracted. The dynamic segmentation function in ArcMap 

was utilized to add links to the upstream and downstream of each identified work zones.  

The next step on this extensive data reduction effort was to submit a list of identified 

link IDs to acquire a sample time series trace and corresponding forward video for each 

potential work zone. About 3,000 traces were received and the forward video was reviewed 

to determine if a work zone was actually present. Data collected from forward videos are 

shown in Table 3.1. 

Table 3.1 Extracted work zone characteristics from forward videos 

Presence of work zone (yes or no) Locations of channelization 

Lane closure Right or left Type of channelization 

Number of lanes closed 
Spatial locations of work zone start and end 

points 

Shoulder closures Right, left, or both Presence and locations of workers 

Dynamic message sign Presence and locations of equipment 

Types and locations of barriers (e.g., 

barrels) 
Lane shift 

Work zone speed limit Active work zone 

 

A set of criteria used to identify an active work zone included lane closure, shoulder 

closure, worker present, and equipment present. In some locations, where barrels were 

present along the side of roadway, the work zone was considered inactive and was excluded. 

At this stage two main criteria to request the final set of time series data was set and 

confirmed. The forward videos were used to identify the true beginning and end points of 

each work zone and confirm if the work zone was actually active. A set of 118 coded active 

work zones including various work zone configurations (such as lane closure and shoulder 
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closure) and types (such as multi-lane divided and 4-lane divided) were requested. Around 

4,800 time series traces with associated forward/rear video images were received from VTTI. 

At this stage traces with more than 25% of missing network speed data were removed from 

the dataset. Speed traces with missing values were interpolated assuming a constant increase 

or decrease. All congested traces were removed and only traces with free flow conditions 

were kept in the analysis. Also traces with very poor image quality were excluded due to the 

inability of identifying the vehicle’s position or confirming if indeed it was an active work 

zone.  

The final step of the process was to identify work zone features such as work zone 

signage, the start of the work zone, the start of the taper, and the start of work area. The 

location of features identified in the forward video were spatially located by noting the 

nearest video time stamp. The time stamp was then matched with the one in the time series 

data utilizing interpolation. The location of features relative to the start of the taper, which 

was identified as zero, were calculated using the speed of the vehicle. In addition, the 

position of the vehicle relative to each safety feature was calculated using the same 

technique. 

3.3.2 Identification of Work Zones of Interest 

This study focused on the analysis of vehicle speeds data in work zones. The 

objective of the study was to analyze various work zone characteristics such as left lane 

closed, right turn closed, left shoulder closed, right shoulder closed, both shoulders closed, 

and lane shifts. It was also desired to analyze different types of speed reduction 

countermeasures, such as lane closed sign, Dynamic Message Sign (DMS), Dynamic Speed 

Feedback Sign (DSFS), work zone speed limit sign. A total of nine work zones with different 
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characteristics has been selected for the analysis in this study. The characteristics of the nine 

selected work zones are shown in Table 3.2.  

Table 3.2 List of work zone characteristics for the sample work zones 

 

Overall Female Male
Inside

 Lane

Outside 

Lane

1

Left lane closed 

4-lane divided 

DMS after 1st 

WZ warning sign

65 55
62

(35)

33

(17)

29

(18)

36

(23)

26

(21)

2

Left lane closed 

4-lane divided 

DMS after lane 

closed sign

65 55
42

(17)

29

(9)

13

(8)

26

(14)

16

(8)

3

Left lane closed 

4-lane divided 

DSFS after 1st 

WZ warning sign

55 45
76

(30)

27

(15)

49

(15)

39

(20)

37

(19)

4
Left lane closed 

multi-lane divided 
70 70

55

(22)

34

(11)

21

(11)

35

(15)

20

(12)

5

Right lane closed 

4-lane divided 

DSFS  after 1st 

WZ warning sign

55 45
68

(29)

24

(15)

44

(15)

53

(27)

15

(9)

6

Left shoulder 

closed

4-lane divided 

55 55
40

(37)

18

(17)

22

(19)

27

(24)

13

(12)

7

Right shoulder 

closed

4-lane divided 

65 65
41

(28)

18

(11)

23

(17)

24

(16)

17

(14)

8

Both shoulder 

closed

4-lane divided 

65 65
49

(12)

30

(5)

19

(7)

17

(8)

32

(9)

9
Lane shift

4-lane divided 
55 55

37

(20)

19

(9)

18

(11)

16

(12)

21

(10)

Work

 Zone 

Work Zone 

Characteristics

Number of speed profiles

(Number of Unique Drivers)

Work 

Zone 

Speed 

Limit 

(mph)

Road

way 

Speed 

Limit 

(mph)
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There are four work zones with left lane closures, three of those are four lane divided, 

but with different types of safety measures such as DMS or DSFS. Work zone one included a 

DMS as a safety measure introduced right after the first work zone warning sign, while the 

DMS in work zone number two was located after the merge sign. Work zone three contained 

a DSFS that was located 2,200 feet upstream of the taper. Work zone number four was on a 

multi-lane divided highway and does not include any DMS or DSFS as safety measures. 

There are other differences between the types and locations of safety measures in all work 

zones of interests, which will be discussed in the results analysis section.  

The number of traces per driver are shown in Table 3.3. The first column shows 

number of traces per driver and the following columns show the number of drivers in each 

work zone that correspond to the number of traces.  

Table 3.3 Number of traces per driver in all work zones 

 

WZ-1 WZ-2 WZ-3 WZ-4 WZ-5 WZ-6 WZ-7 WZ-8 WZ-9

1 19 13 17 16 13 32 19 5 14

2 9 1 4 3 5 4 6 1 3

3 3 2 3 7 2 1 1

4 4 2 1 1 1 1

5 1 1

6 1 1 2 2

7 1 1

8 2 1 1

10 1

15 1 1

21 1

Total 

Number of 

Traces

62 42 76 55 68 40 41 49 37

Number of DriversNumber 

of 

Traces per 

Driver
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For example, work zone one had 19 drivers, each with a single trace, 9 drivers, each with 2 

traces, 3 drivers, each with 3 traces, and 4 drivers, each with 4 traces. 

The forward video of each trace was observed to locate the start and end of the work 

zone, the start of the taper, the start of the work area, and all individual safety measures. This 

was accomplished by spatially locating the interested features in the video and matching the 

time stamp in the video with that of the time series data by interpolation. Then, the location 

of features relative to the start of the taper, identified as zero, was calculated using the speed 

of the vehicle. A list of coded features in work zones is shown in Table 3.4. 

Table 3.4 Work zone features extracted from forward videos 

Coded Features in Work Zones 

Work Zone 1st Warning Sign Work Zone Speed Limit Sign 

Work Zone Advisory Sign Presence of Barrels 

Work Zone 2nd Warning Sign Presence of Jersey Concrete Barrier 

Work Zone 3rd Warning Sign Presence of Cones 

Work Zone 4th Warning Sign Merge Sign 

DMS Lane Closed Sign 

DSFS Start of the Taper 

Flashing Arrow Start of the Work Area 
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3.4 Methodology 

A changepoint is a sudden variation in time series data. Changepoint detection is 

useful in the modeling and predicting of time series data. It has discovered application areas 

such as medical imaging, climatology, finance, oceanography, and speech and image analysis 

(30-33).  

Changepoint analysis is a statistical tool designed to achieve homogeneity within time 

series data. This can be achieved by partitioning the time series data into a number of 

homogeneous segments. Multiple changepoints detection, also known as time series 

segmentation, is basically finding a time instance when statistical properties of data change. 

In time series segmentation, data is divided into a sequence of separate segments to show the 

underlying properties of its source of isolation. It is used to locate stable periods of time or to 

identify changepoints (30, 32).  

3.4.1 Background on Multiple Changepoints Detection Algorithms 

Changepoint detection is the process of finding abrupt changes in time series data 

when the statistical property of time series changes. Considerable efforts have been devoted 

to efficiently and accurately identify multiple changepoint locations in regard to time series 

data. This topic has been widely studied over the last several decades in statistics and data 

mining (30-33). There are two major issues addressed in the literature. One is determining 

the parameters affected by changepoints such as mean and the second is selecting the number 

of changepoints. The issue of determining parameters affected by changepoints has led to 

main research path: Hidden-Markov-based methods and segmentation methods (31-33). 

Literature indicated segmentation methods, which are based on segmentation criteria such as 

likelihood ratio, least-squares, and the cumulative sum of squares, are the most common.  
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There are three major segmentation methods for multiple changepoint analysis. The 

first is Binary Segmentation (BS), proposed by Scott and Knott (34), which is an 

approximate algorithm. This method first finds a single changepoint in the entire time series 

data which splits data to two segments at the changepoint location, if a changepoint is found. 

The process continues until no changepoints can be found in any parts of the data. BS is an 

approximate minimization, as any changepoint location is conditional on changepoints 

identified previously. BS is quick as it only consider a subset of possible solutions. The speed 

comes at the expense of accuracy of the resulting identified changepoints (33-35).  

The second method is Segmentation Neighborhood (SN), which was proposed by 

Auger and Lawrence, 1989 (36) and further explored by Bai and Perron, 1998 (37).  The SN 

algorithm uses a dynamic programing technique to obtain the optimal segmentation for m+1 

changepoints reusing the information that was calculated for the last changepoints (m). 

Although the SN is an exact method, the computational complexity is considerably greater 

than that for BS.  

The third segmentation method is improved Optimal Partitioning (OP). Killick et al. 

(32) proposed this new approach to search for multiple changepoints in 2012. The Pruned 

Exact Linear Time (PELT), like SN, provides an exact segmentation. The main assumption 

that controls the computational cost is that the number of changepoints increases linearly as 

the dataset grows. The pruning reduces the computational cost while maintaining the 

exactness of the resulting segmentation (33). It was revealed that the PELT method does 

substantially more accurate segmentation than the BS. In this research we adopt PELT 

algorithm as it produces a computational efficiency which is more suitable for big data 

processing applications (33).  
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3.4.2 Pruned Exact Linear Time (PELT) Algorithm 

With an increased collection of time series data, there is a growing need for the ability 

to estimate the locations of multiple changepoints accurately and efficiently. PELT algorithm 

has been identified to be the best available segmentation method to efficiently and accurately 

identify the number and locations of changepoints in time series data, particularly for big 

data processing applications. 

Changepoint analysis is a statistical tool designed to achieve homogeneity within time 

series data.  This can be achieved by partitioning the time series data into a number of 

homogeneous segments. Multiple changepoints detection, also known as time series 

segmentation, is basically finding a time instance when statistical properties of data change. 

In time series segmentation, data is divided into a sequence of separate segments to show the 

underlying properties of its source of isolation. It is used to locate stable periods of time or to 

identify changepoints (31-33).  

Let’s define our speed time series data set as:  

V1:n = (V1, V2,..., Vn) 

A changepoint may occur within this set when there exists a time:  

τ ∈ {1,...,n − 1} 

where statistical properties of: 

{V 1,..., V τ}  and  {V τ+1,..., Vn} 

are different in some way (38).  In multiple changes, we have a number of changepoints, m, 

together with their positions: 

τ 1:m = (τ1,...,τm) 
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Each changepoint position is an integer between 1 and n−1. We define τ0 = 0 and τm+1 = n, 

and assume that the changepoints are ordered so that τi < τj if, i < j. Therefore the m 

changepoints will split the data into m + 1 segments, with the ith segment containing data  

𝑉
 (𝜏 1i +1)∶ 𝜏 i  

 

The aim of the analysis is to efficiently and accurately estimate the location of 

multiple changepoints by minimizing Formula 1: 

                                              ∑[𝐶(𝑉
 (𝜏 1i +1)∶ 𝜏 i  

𝑚+1

𝑖=1

)] + 𝛽𝑓(𝑚)                                          (3.1) 

Where C is a cost function for measure of fit and βf (m) is a penalty to guard against 

overfitting. There were several penalty functions used within changepoint analysis with 

PELT algorithm, such as SIC (Schwarz information criterion), BIC (Bayesian information 

criterion), and AIC (Akaike information criterion). There was also the option of manual 

penalty value provided to adjust for an overfitting issue (31). 

3.4.3 Application of PELT for Driver Speed Behavior in Work Zones 

The speed time series data at a rate of 0.1 seconds (10 HZ) in work zones were used 

to develop changepoint models by utilizing a PELT changepoint package (cpt) in R to 

accurately and efficiently estimate the location of multiple changepoints for the mean of 

speed time series profile.  

The data could be partitioned into regions that lie in between different important 

events. In our case, events could be a series of safety features such as DMS, speed limit, 

speed feedback, merge, flashing arrow, and similar signs.  
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Several safety features are introduced throughout the work zone to get drivers’ 

attention to slow down as shown in Figure 3.1, which reveals the speed profile of a single 

trace. This speed profile is from 2,000 meters upstream of the start of the taper (point zero), 

all the way through the work area and to the end of the work zone. It also shows the types 

and locations of various work zone safety features applied to promote safe driving. The units 

in this figure are identical to that collected in the NDS study. In the analysis, the distance unit 

was converted to mile and the speed unit was converted to miles per hour. 

 

Figure 3.1 Applied safety measures in work zone one 

Each safety feature might have a different effect on vehicle speed throughout the 

work zone, therefore it could be a cause of a separate changepoint detected in the work zone.  
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3.5 Multiple Changepoint Analysis Results 

The potential changepoints in the mean of multiple speed time series data over 

various work zones with different characteristics have been studied. A multiple changepoint 

analysis model was used to create a model predicting driver reaction to various work zone 

safety measures. Time series data at a rate of 0.1 seconds were used to develop changepoint 

models by utilizing a PELT changepoint package (cpt) in R to accurately and efficiently 

estimate the location of multiple changepoints for the mean of speed time series traces.  

There were nine work zones in the study with different characteristics. Various safety 

countermeasure types and locations were introduced in work zones, which involved left lane, 

right lane, lane shift, and shoulder closure scenarios as shown in Table 3.2, and will be 

discussed in the following sections. In each work zone five models were created which 

consist of all, male, female, closed lane, and open lane driver groups. These models helped to 

observe and differentiate drivers’ behaviors in each group in relation to a comparable group 

(e.g. male versus female drivers).  

In this study the location of work zone Temporary Traffic Control Devices (TTCD) 

were confirmed according to the Manual of Uniform Traffic Control Devices (MUTCD) 

guidelines. It provides guidance on the use and implementation of TTCD. The 

implementation of TTCD usually follows the agency guidelines for road safety, considering 

factors such as traffic conditions, traffic volume, site conditions, and the cost effectiveness of 

safety devices. The selection of the TTCD depends on the nature of the road work. There are 

many different applications of work zones which are demonstrated in Part 6 of MUTCD (40).  
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Figure 3.2 shows a typical application of suggested type and placement of TTCD in a 

work zone. There are four signs associated with the stationary lane closure in the schematic, 

including the first warning sign, second warning sign, lane closed sign, and flashing arrow.  

 

Figure 3.2 Typical TTCD application for a stationary lane closure arrangement on a 

divided highway (FHWA 2009) 

The placement locations are identified and the dimensions are shown as A, B, and C. 

These dimensions can be calculated using the information in Table 3.4 which are defining the 

letter codes for the application of the TTCD diagram. The dimension A is the distance from 

the point of restriction to the location of the first sign which depends on the type and speed of 

the roadway as shown in Table 3.5. The first sign is the closest sign to the work area. The 

letters B and C are dimensions showing the distances between the first and second signs and 

between the second and third signs, respectively. The third sign is the furthest sign upstream 
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of the work area. All nine work zones in this study were selected in accordance with the 

suggested locations of the TTCD with distance requirements. 

Table 3.5 Recommended advanced warning sign minimum spacing (FHWA 2009) 

Roadway Type 
Distance Between Signs  

A B C 

Urban (low speed)    100 ft.    100 ft.    100 ft. 

Urban (high speed)    350 ft.    350 ft.    350 ft. 

Rural    500 ft.    500 ft.    500 ft. 

Expressway / Freeway 1,000 ft. 1,500 ft. 2,640 ft. 

 

The road types of all nine work zones are expressway/freeway with high speed limits. 

Therefore, the suggested distances of the signs were compared with the expressway/freeway 

category of Table 3.4. The distance of the closest sign to the point of restriction was equal to 

or greater than 1,000 feet and the distance of the furthest sign upstream of the transition point 

was also greater than 2,640 feet for similar conditions.  

The results of the models, developed for various work zone characteristics, are 

presented to identify the effects of a countermeasure or a series of countermeasures 

collectively on speed reduction. The first scenario will be discussed in great detail and the 

analyses of the remaining scenarios will be focused in the major findings. 

3.5.1 Left Lane Closure with a DMS after Work Zone first Warning Sign 

The changepoint model with PELT algorithm was applied to the 62 speed time series 

traces of vehicles traveled through a left lane closed work zone on a rural 4-lane divided 

highway.  

There were a series of safety measures applied in work zone one to catch drivers’ 

attention which are shown in Figure 3.3. The roadway speed limit was 65 mph and changed 
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to 55 mph in the work zone. There is only one speed time series trace in Figure 3.3 from one-

quarter mile upstream of the work zone’s first warning sign all the way through the work 

area. The one-quarter mile upstream location of the first warning sign was chosen to observe 

drivers’ behavior before that sign became visible to them. The vertical orange dashed-lines 

represent the locations of safety features throughout the work zone. The first work zone 

warning sign was placed at about one mile upstream of the work area which is slightly 

different than the calculated distance from the point zero (start of taper) on this study. 

 

Figure 3.3 Work zone one with left lane closure and utilized safety features types and 

locations 

The start of taper was selected as the location where the transition or the point of restriction 

starts, as disscussed in the MUTCD typical diagram. Here the first point of restriction was 

where the barrels were introduced in the shoulder to gradually close the left lane.  

The five categories examined in this study were overall, male, female, closed lane, 

and open lane drivers. The results of all models are discussed in the following sections. 
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3.5.1.1 Overall Drivers’ Speed Profiles 

There were 62 speed profiles in this work zone which were from a one-quarter mile 

upstream of the first work zone warning sign, all the way through the work area, and 

continued to one mile after the start of  the taper. Figure 3.4 shows a visual representation of 

the speed time series distributions for all driver traces. Boxplots in green color were used to 

show how each speed  profile has been distributed throughout the work zone. A brief 

observation of the plot reveals a high variability in speed ranged between 50 and 75 mph. 

The high variation was observed both within and between speed profiles. The blue line is the 

actual speed limit of the roadway and the red line represents the work zone speed limit. The 

speed profiles mainly hovered around 65 mph, the roadway speed limit, and a low proportion 

of the speeds reached 55 mph, the work zone speed limit. 

 

Figure 3.4 Visual illustration of work zone 1 speed profiles distributions for all drivers 

The time series data for work zone one are shown in Figure 3.6 (a) through (d). Part 

(a) shows the raw speed time series traces from 1.3 mile upstream of the taper to the work 

area. The calculated mean of the speed times series data for every 8.8 feet is shown as a thick 
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red line in part (b). The distance of 8.8 feet nearly corresponds to every 0.1 second. The 

entire 2.3 miles of data corresponds to an average of 1,380 observations per trace which is 

lasted about 2.3 minutes. This is the average time for all 62 traces to travel from one-quarter 

mile upstream of the first warning sign all the way to one mile after the start of the taper. 

The mean speed of time series traces was fitted in the multiple changepoint model to 

estimate the maximum number of changepoints using the PELT algorithm as shown in part 

(c). The PELT changepoint model with a default penalty detected 14 changepoints which 

provided 15 homogeneous segments. A glance at the model, with very small segment lengths 

and  minimal mean speed changes between the segments, suggests the model is too sensitive 

to changes and overfitted. To guard against the overfitting the penalty value needed to be 

adjusted. As discussed earlier, the objective of the model is to efficiently and accurately 

estimate the location of multiple changepoints by minimizing the cost in Formula 3.1, which 

consists of the cost function which is the measure of the fit and the penalty to guard against 

overfitting. 

The decision on choosing an appropriate penalty typically depends on many factors, 

such as the size of the change and the length of the segments in a stable condition, both of 

which are unknown prior to an analysis. In current practice, the choice of penalty is often 

assessed by plotting data and observing the changepoints to find if they are reasonable. The 

mimimum segment length in a stable condition was observed to be 80 points or 8 seconds, 

which reflected the best fit for the data in this study. The sensitivity analyses were conducted 

by increasing and decreasing the penalty values which are illustrated in Figure 3.5. The top 

graph shows the optimal chosen penalty of 45*log (n).  
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Figure 3.5 Changepoint detection model sensitivity analysis 

Optimal applied penalty (top), over-fitted (middle), and under-fitted (bottom) 
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The middle graph represents a lower penalty than the optimal chosen at 40*log (n), 

which created two additional changepoints, one at the upstream with a segment length of 154 

observations or 15.4 seconds and a very short segment  closer to the work area with a length 

of 49 observations or 4.9 seconds. This shows the model is too sensitive as it detected a 

changepoint at a location with no apparent stable condition.  

The penality was increased from the optimal value by 5 points increments and the 

results in terms of changepoints didn’t change until a panality of 180*log (n) was reached as 

shown in the bottom graph in Figure 3.5. Therefore, the changepoint model in the top graph 

which detected four changepoints illustrated it has the optimal applied penalty for this work 

zone. This sensitivity analysis as shown in Figure 3.5 was repeated for all work zones to 

determine the optimal penalty value. 

To overcome the issue of overfitting, a manual penalty was increased to 35 log (n), 

where n is the number of segments. The PELT model with the applied manual penalty 

returned five changeponts with six homogeneous segments as shown in part (d). The average 

mean speed for all traces upstream of the first warning sign was 66.8 mph and the length of 

the stable condition was 226 which translated to about 2,000 feet.or 22.2 seconds  

The first changepoint was in reaction to the first work zone warning sign and DMS 

sign with a mean speed reduction of 1.5 mph. After the first changepoint, the mean speed 

was in a stable condition for about 3,500 feet and there was no reaction to the work zone’s  

second warning sign, which is located about half a mile from the firstt warning sign.  

The next changepoint occured when drivers reacted to the presence of  a merge sign, 

a work zone speed limit sign (55 mph), the start of the taper, and a flashing arrow sign. The 
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cumulative effects of these safety measures caused a 3.5 mph mean speed reduction. The 

mean speed was in a stable condition for about 1,700 feet and almost 20 seconds. 

The next identified changepoint was a mean speed reduction of 3.8 mph in reaction to 

a work zone speed limit sign, presence of channelization, and barriers on both sides of a 

single lane to direct the traffic to the other side of the roadway. The length of the stable 

condition following this changepoint was 150, which is a little over 1,300 feet or 15 seconds.  

As drivers entered the work area, the mean speed had the highest decrease of all by 

5.8 mph. The mean speed was reduced from the previous segment of 58 to 52.2 mph. After 

this reaction, the segment length in a stable condition was 239 which corresponds to 2,100 

feet or about 24 seconds. 

After traffic moved to the other side of the rodway with a head-to head traffic, the 

next changepoint was an increase of 1.5 mph in average mean speed. The length of segment 

after this changepoint was 169, which means the segment was in a stable condition for about 

1,500 feet and lasted almost 17 seconds. 

The overall reaction to the series of safety features in work zone one dropped the 

average mean speed from 66.8 mph upstream of the work zone’s first warning sign to 52.2 

mph at the work area. This was an average 14.6 mph mean speed reductions for all 62 speed 

traces. 
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Figure 3.6 Developing multiple changepoint model for overall drivers in work zone one 

(a) Plot of speed time series traces (b) Plot of calculated mean speed for time series traces (c) 

Default detected multiple changepoints (d) Adjusted detected multiple changepoints 
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3.5.1.2 Male Drivers’ Speed Profiles 

The multiple changepoint model with the PELT algorithm was used to fit the 29 

speed profiles of male drivers. Figure 3.7 presents male drivers’ speed time series traces 

distribution. The speed distributions seem to be more toward the higher end of the spectrum. 

The variability between profiles seems to be lower relative to overall traces. About 70 

percent of male drivers median speed is above 65 mph which is 10 mph above the work zone 

speed limit.  

 

Figure 3.7 Plot of speed time series distributions for male drivers 

Figure 3.8 parts (a) through (d) illustrates male drivers’ speed time series plots. Part 

(a) shows the male drivers’raw speed time series traces. It can be seen from the plots of part 

(a) and part (b)  that the majority of speed traces traveled at a high speed from upstream of 

the first warning sign up to the location where they encountered the merge sign, the work 

zone speed limit sign, the start of the taper, and the flashing arrow sign.  

The mean speed of time series traces was fitted in the multiple changepoint model to 

estimate the maximum number of changepoints using a PELT algorithm as shown in part (c). 
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Figure 3.8 Developing multiple changepoint model for male drivers in work zone one  

(a) Plot of speed traces (b) Plot of calculated mean speed for time series traces (c) Default 

detected multiple changepoints (d) Adjusted detected multiple changepoints 
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The PELT changepoint model with a default penalty created 14 changepoints and 

provided 15 homogeneous segments. Similar to that for all traces, the model with the very 

small segment length and  minimal mean speed changes between the segments is too 

sensitive and overfitted.  

To adjust for overfitting, a manual penalty was increased to 50 log (n). The same 

manual penalty as for all traces of 35 log (n) was returning six changepoints with one 

segment length was 75 which corresponds to 650 feet. This is a relatively short stable 

condition and suggested the model was still sensitive.  The PELT model with the applied 

manual penalty returned five changeponts with six homogeneous segments as shown in part 

(d). The average mean speed for all traces upstream of the first warning sign was 68.5 mph 

and the length of the stable condition was 307 which was about 2,700 feet and lasted about 

31 seconds.  

The first changepoint occured in reaction to the first work zone warning sign and a 

DMS sign with a mean speed reduction of 1.6 mph. After the first changepoint, the mean 

speed was in a stable condition for about 2,900 feet and there was no reaction to the work 

zone second warning sign.  

The next changepoint occured when drivers reacted to the presence of a left lane 

closed sign, a work zone speed limit sign, the start of the taper, and a flashing arrow sign. 

The cumulative effects of these safety measures caused a mean speed reduction from 66.9 

mph to 63.2 mph, for a mean speed reduction of 3.7 mph. The mean speed was in a stable 

condition for about 1,550 feet or almost 16seconds. 

The next observed changepoint was a mean speed reduction of 4.0 mph when drivers 

reacted to a work zone speed limit sign, presence of channelization, and barriers on both side 
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of a single lane to direct the traffic to the other side of roadway. The length of stable 

condition following this changepoint was 158 which is about 1,400 feet and lasted almost 16 

seconds.  

As drivers approached the work area, the mean speed had the highest decrease by 5.7 

mph. The mean speed was reduced from the previous segment of 59.2 mph to 53.5 mph. The 

length of the segment in a stable condition was 241, which corresponds to about 2,100 feet or 

about 24 seconds after drivers reacted to the work area’s environment.  

After traffic moved to the other side of the rodway with head-to head traffic, the next 

changepoint was an increase of 2 mph in mean speed. The length of segment after this 

changepoint was about 1,500 feet and lasted almost 17 seconds. 

The overall male drivers’ reaction to the series of safety features in work zone one 

dropped the average mean speed from 68.5 mph upstream of the work zone first warning sign 

to 53.5 mph at the work area, a 15 mph mean speed reduction. 

3.5.1.3 Female Drivers’ Speed Profiles 

There were 33 speed traces belonging to female drivers in work zone one. Figure 3.9 

shows female drivers’ speed profiles distribution, which seems more spread out between 

profiles. The median speed is lower compared to male drivers’ traces. The majority of the 

speed is between 55 mph and 65 mph. The median speed of about 65 percent of traces were 

below 65 mph. 

Figure 3.10 parts (a) through (d) illustrates female drivers’ speed time series plots. 

The mean speed variation remained almost similar from upstream all the way to the upstream 

of the work area as shown in part (a) and (b), while variations observed to be slightly higher 

around the work area.  
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Figure 3.9 Visual illustration of speed time series distribution for female drivers’ traces 

The PELT changepoint model returned 13 changepoints which provided 14 

homogenious segments as shown in part (c). Again, the model was too sensitive and 

overfitted.  

The manual penalty was increased to 35 log (n). The PELT model with an applied 

manual penalty returned 5 changeponts with 6 homogeneous segments as shown in part (d). 

The average mean speed for all traces upstream of the first warning sign was 65.6 mph and 

the length of stable condition was 111 which corresponded to less than 1,000 feet and 

duration of 11 seconds.  

The first changepoint was observed when drivers reacted to the first work zone 

warning sign and the DMS sign with a mean speed reduction of 1.7 mph. After the first 

changepoint, the mean speed was in a stable condition for about 4,500 feet which lasted for 

51 seconds.The speed trends slightly increased between the first and second warning signs 

which are one-half mile away from each other. There was no reaction to the work zone 

second warning sign. 
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Figure 3.10 Developing multiple changepoint model for female drivers in work zone one  

(a) Plot of speed time series traces (b) Plot of calculated mean speed for time series traces (c) 

Default detected multiple changepoints (d) Adjusted detected multiple changepoints 
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The next changepoint was observed when drivers reacted to the presence of  a merge 

sign, a work zone speed limit sign (55 mph), the start of the taper, and a flashing arrow sign. 

The collective effects of these safety measures dropped the average mean speed by 3.4 mph. 

The mean speed was in a stable condition for over 1,700 feet or almost 20 seconds. 

The next identified changepoint was a mean speed reduction of 3.5 mph when drivers 

reacted to the work zone speed limit sign, presence of channelization, and barriers on both 

sides of a single lane. The length of stable condition following this changepoint was 148 

which is almost 1,300 feet.  

The average mean speed experienced a relatively large decrease of 5.9 mph as drivers 

entered the work area. The mean speed was reduced from of 57 mph to 51.1 mph. After 

drivers reacted to the work area conditions, the segment length in a stable condition was 239 

which corresponds to 2,100 feet or about 24 seconds. 

The final changepoint was an increase of 2.8 mph in the average mean speed after 

traffic was directed to the opposit side of the roadway with  head-to-head traffic. The length 

of the segment after this changepoint was about 1,500 feet and lasted almost 17 seconds. 

The overall female drivers’ reactions to a series of safety features in work zone one 

dropped the average mean speed by 14.5 mph, from 65.6 mph upstream of the work zone 

first warning sign to 51.1 mph at the work area.  

3.5.1.4 Closed Lane (Outside Lane) Drivers’ Speed Profiles 

A model was fitted with 26 speed traces of drivers who drove in the closed or outside 

lane for the majority of time they traversed the work zone. Figure 3.11 shows closed lane 

drivers’ speed time series distributions. The speed distributions from the boxplots reveal less 
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variation in between speed profiles for the majority of traces. Most of the median speeds are 

above 65 mph for drivers who were driving through the work zone in the closed lane. 

 

Figure 3.11 Visual illustration of speed time series distribution for closed lane drivers 

Plots of closed lane drivers’ speed time series traces are shown in Figure 3.12 parts 

(a) through (d). Traces in the plots of (a) and (b) show low variability in the speed between 

the traces from upstream of first work zone sign almost to the start of the work area. The 

higher speed variations in the work area were observed.   

The PELT changepoint model returned 18 changepoints which provided 17 

homogenious segments for the default penalty as shown in part (c). To overcome the issue of 

overfitting, a manual penalty was increased to 35 log (n), but it contained a very short stable 

segment which stated the model was still  sensitive. The manual penalty was increased to 50 

log (n) when the model returned four changepoints with five homogeneous segments as 

shown in part (d). The average mean speed for all traces upstream of the first warning sign 

was 68.1 mph and the length of the stable condition was about 5,500 feet and lasted almost 

62 seconds. There was no major reaction to the presence of the firstwork zone warning sign 

or the DMS.  
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Figure 3.12 Developing multiple changepoint model for closed lane drivers in work zone 

one  

(a) Plot of speed time series traces (b) Plot of calculated mean speed for time series traces (c) 

Default detected multiple changepoints (d) Adjusted detected multiple changepoints 

(

a) 

(

b) 

(

c) 

(

d) 
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The first major changepoint occured when drivers reacted to the presence of  a left 

lane closed sign, a work zone speed limit sign, the start of the taper, and a flashing arrow 

sign. The cumulative effects of these safety measures dropped the average mean speed by 5.5 

mph. The mean speed was in a stable condition for about 1,700 feet after this changepoint. 

 The next identified changepoint was a mean speed reduction of 4.3 mph when 

drivers reacted to the work zone speed limit sign, presence of channelization, and barriers on 

both side of a single lane to direct the traffic to the other side of roadway. The length of 

stable condition following this changepoint was about 1,400 feet.  

The highest changepoint occurred when drivers approached the work area. The 

average mean speed dropped 6.9 mph from 58.3 to 51.4 mph. The length of the new segment 

was about 2,100 feet and lasted about 24 seconds. 

The final changepoint was an increase of 4 mph in average mean speed after traffic 

was directed to the opposite side of the rodway with head-to-head traffic. The length of the 

segment after this changepoint was about 1,500 feet. 

The overall closed lane drivers’ reaction to a series of safety measures in work zone 

one reduced their speed by 16.7 mph from upstream of the work zone first warning sign to 

the work area.  

3.5.1.5 Open lane (Inside Lane) Drivers’ Speed Profiles 

From the 62 traces, 36 were drivers who traversed the work zone through the open 

lane. Figure 3.13 presents open lane drivers speed time series traces’ distribution. The speed 

distributions for open lane traces seem to have the highest variability between the traces. The 

average speed is relatively lower compared to all traces and is mainly distributed between 55  

and 65 mph. 
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Figure 3.13 Visual representation of speed time series distribution for open lane drivers 

Figure 3.14 parts (a) through (d) illustrates open lane speed time series plots. The 

speed traces revealed a consistant speed from upstream of the first warning sign all the way 

to the start of the taper and the flashing arrow and a gradual speed reduction when 

approached channelization as shown in part (a) and (b). The speed variations remained 

almost constant in all different sections of work zone. 

 The PELT changepoint model returned 12 changepoints which provided 13 

homogenious segments as shown in part (c). To overcome the issue of overfitting, a manual 

penalty was increased to 35 log (n). The PELT model with applied manual penalty returned 

four changepoints with five homogeneous segments as shown in part (d). The average mean 

speed for all traces upstream of the first warning sign was 65.2 mph and the length of stable 

condition was about 2,000 feet and lasted almost 23 seconds.  

The first changepoint occured when drivers reacted to the first work zone warning 

sign and the DMS sign with a mean speed reduction of 1.4 mph. The mean speed changed to 

63.7 mph and remained in the stable condition for over 3,500 feet.  
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Figure 3.14 Developing multiple changepoint model for open lane drivers in work zone 

one  

(a) Plot of speed time series traces (b) Plot of calculated mean speed for time series traces (c) 

Default detected multiple changepoints (d) Adjusted detected multiple changepoints 
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The next changepoint was observed when drivers reacted to the presence of  the lane 

merge sign, the work zone speed limit sign (55 mph), the start of the taper, and a flashing 

arrow sign. The collective effects of these safety measures dropped the average mean speed 

by only 2.5 mph. The amount of the mean speed drop was low relative to overall, male, and 

female traces. The mean speed was in an stable condition for over 1,600 feet after this 

changepoint. 

The next identified changepoint was a mean speed reduction of 3.3 mph when drivers 

reacted to the work zone speed limit sign (55 mph), presence of channelization, and barriers 

on both side of a single lane directing traffic to the other side of the roadway. The length of 

the stable condition following this changepoint was about 1,300 feet.  

The average mean speed dropped 4.5 mph as drivers entered the work area. The mean 

speed was reduced from the previous segment of 57.9 mph to 53.4 mph in the new segment.  

The overall drivers’ reaction to a series of safety features in work zone one with the 

left lane closure dropped the average mean speed from 65.2 mph upstream of the work zone 

first warning sign to 53.4 mph at the work area. This is an average 11.8 mph mean speed 

reductions for drivers drove in the open lane throughout the work zone. 

3.5.1.6 Analysis Results Summary 

The summary results of the changepoints detection analysis for all five groups in 

work zone one are provided in Table 3.6. The highest upstream speed was for male drivers at 

68.5 mph. This was about 5 and 6 percent higher than females and open lane drivers, 

respectively, and similar to that of closed lane drivers. The number of male drivers on open 

and closed lanes is almost identical at 14 and 15, respectively, while the number of female 

drivers on open lane was twice as many as who drove on closed lane  
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The first reaction was about 1.5 mph to the first work zone warning sign and the 

DMS, according to the model. The reaction was slightly higher for female drivers. The 

drivers in the closed lane had no reaction to the presence of first work zone warning sign and 

the DMS.  

The first major reaction for closed lane drivers was when they approached the lane 

closure sign, the work zone speed limit sign, the start of the taper, and the flashing arrow. 

The combined effect of these safety features was a reduction of 5.5 mph, which corresponds 

to over 8 percent speed reduction compared to upstream speed. The reaction to these series of 

safety measure was lowest for open lane drivers with 2.5 mph speed reduction and slightly 

higher for male drivers at 3.7 mph compared to 3.4 mph for female drivers. 

Table 3.6 Summary of multiple changepoints detected in work zone 1 

 

After drivers reacted to the taper point and the flashing arrow, they approached 

another posted speed sign of 55 mph and channelization by barrels, jersey barriers, and a 
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series of chevrons. The channelization was set up to direct the traffic to the opposite side of 

the roadway for head-to-head traffic since one side of the road was completely closed. The 

effect of this situation forced the drivers to reduce their speed by 3.8 mph for all drivers. The 

reduction was even higher for closed lane and male drivers with 4.3 and 4 mph, respectively. 

The open lane drivers once again had the lowest reaction to this situation and reduced their 

speed by 3.3 mph. 

The final changepoint detected at the start of work area where presence of equipment 

and occasionally workers were observed. The reaction to this involved the highest speed 

reduction for all categories in the analysis. The mean speed for the closed lane drivers 

decreased by 6.9 mph from 58.3 mph to 51.4 mph, a reduction of about 12 percent in mean 

speed. Female, overall, and male drivers had pretty similar reactions to this situation by 

reducing their mean speed by about 5.8 mph, while open lane drivers reduced their speed by 

4.5 mph. 

The overall speed reduction was highest for closed lane drivers by 16.7 mph and 

lowest for open lane drivers by 11.8 mph. It was similar for overall and female drivers by 

about 14.5 mph and slightly higher for male drivers with a 15 mph speed reduction in the 

work zone one. 

For work zone two and the remaining work zones in this research, the main findings 

of each model will be discussed. All the steps in developing the final changepoint models 

along with the associated plots were discussed comprehensively in this section. The 

intermediate steps and plots will be eliminated due to the extent of the research and the fact 

that the process was already explained in great detail.  
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3.5.2 Left Lane Closure with a DMS after Lane Merge Sign 

Work zone two involved a left lane closure on a 4-lane divided rural highway. There 

were 42 speed time series traces in this work zone. The distributions of speed traces are 

shown in Appendix 3. The majority of drivers’ speed is between of roadway speed of 65 mph 

and the work zone speed of 55 mph. A series of safety measures applied in this work zone 

included a left merge sign, a DMS, a work zone speed limit sign, taper point, and a flashing 

arrow. In this work zone a DMS was located after the left lane closed sign at about 1,400 feet 

upstream of the start of the taper. The speed profiles selected in this work zone starts about 

500 feet upstream of the first observed sign, which is lane closed sign, and continued all the 

way to the work area, as shown in Figure 3.15.   

Speed time series traces along with computed mean for overall (a), male drivers (b), 

female drivers (c), closed lane (d), and open lane (e) drivers are shown in the left panel of  

Figures 3.15 through 3.22 for work zones two to nine, respectively. The time series data for 

all five groups fitted in the multiple changepoints model and the PELT algorithm was applied 

to detect the optimal number and locations of the changepoints. The corresponding results of 

the multiple changepoint models are shown in the right panel of in Figures 3.15 to 3.22.  

There were three changepoints detected in the models for all 5 groups in this work 

zone. There was an acceptable period of stability observed after each changepoint in models 

for all groups. The upstream mean speed ranged from 59.2 to 63.8 mph. The mean speed data 

reveals male drivers started to react to the safety measures earlier than all other groups about 

100 feet before the lane closed sign. The closed lane drivers started to react at about 100 feet 

after the lane closed sign. The reactions for all, female, and open lane drivers occurred 

between 200 to 300 feet before the DMS sign.  
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Figure 3.15 Developing multiple changepoint models for work zone two 

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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The mean speed of open lane and male drivers at the work area were 58.5mph and 57 

mph, respectively. The female drivers had the lowest mean speed at the work area with 54.7 

mph. The mean speed of all and closed lane drivers were close to the work zone speed limit.  

3.5.2.1 Analysis Results Summary 

The results of multiple changepoint detection models for all 5 groups in the work 

zone with a left lane closure and a DMS located at about 1,400 feet upstream of the taper are 

summarized in Table 3.7.  

Table 3.7 Summary of multiple changepoints detected in work zone 2 

 

The mean speed at the upstream of the first sign was relatively low for all 5 groups 

and ranged from 59.2 mph for open lane drivers to 63.8 mph for closed lane drivers. A 

changepoint was detected in response to the DMS and work zone speed limit sign. The 

largest reaction was observed for open lane drivers with a 2.8 mph mean speed reduction. 

The range of the mean speed reduction was between 2.1 and 2.8 mph. According to the next 

detected changepoint in the model, which was a reaction to the start of the taper and flashing 
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Mean 

Speed 
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(mph)

All 

(42 Traces)
61.9 -2.1 59.8 -2.5 57.3 -1.9 55.4 -6.5

Male drivers 

(13 Traces)
63.5 -2.3 61.2 -1.6 59.6 -2.6 57.0 -6.5

Female drivers 

(29 Traces)
61.1 -2.6 58.5 -2.4 56.1 -1.4 54.7 -6.4

Closede lane 

(16 Traces)
63.8 -2.6 61.2 -3.8 57.4 -2.3 55.1 -8.7

Open lane 

(26 Traces)
59.2 2.8 62.0 -1.3 60.7 -2.2 58.5 -0.7

Model 
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arrow, closed lane and the open lane drivers had the highest and lowest mean speed 

reductions by 3.8 mph and 1.3 mph, respectively.  

The final changepoint was detected as drivers approached the work area. The male 

drivers’ mean speed was decreased by 2.6 mph from 59.6 to 57 mph. The female drivers 

mean speed was reduced by 1.4 mph. Surprisingly, the open lane drivers had the highest 

mean speed of 58.5 mph after reacting to the work area and reducing their speed by 2.2 mph. 

The overall speed reduction was only 0.7 mph for open lane drivers compared to 8.7 

mph for closed lane drivers. Male and female drivers have similar overall speed reductions 

by about 6.5 mph, but had different upstream speeds resulting in male drivers’ higher mean 

speed at the work area. 

3.5.3 Left Lane Closure with a DSFS after Work Zone First Warning Sign 

There were 76 speed time series traces in work zone three for the vehicles traveled 

through a left lane closed work zone with a DSFS on a rural 4-lane divided highway.  

The distributions of speed traces are shown in Appendix 3. The speed distributions for the 

majority of the drivers were above the roadway speed limit of 55 mph throughout the work 

zone. A series of safety measures applied in this work zone included first work zone warning 

sign with an attached advisory speed plate of 50 mph, a DSFS, a second work zone warning 

sign with an attached advisory speed plate of 45 mph, a left lane closed sign with an attached 

advisory speed plate of 45 mph, taper point, a flashing arrow, and a work zone speed limit 

sign. The DSFS was located at about 500 feet after the first work zone warning sign and 

about 2,200 feet upstream of the taper. The speed time series data for this work zone was 

collected at one-quarter mile upstream of the first warning sign which was located at 0.5 

miles upstream of the taper. 
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Figure 3.16 Developing multiple changepoint models for work zone three  

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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Models detected 4 changepoints in work zone three in reaction to the applied safety 

countermeasures. The mean speed upstream of the first work zone warning sign ranged from 

60.7 mph for open lane drivers to 65.6 mph for the closed lane drivers. This reveals the 

upstream speed was about 15% higher than roadway speed limit of 55 mph among all groups. 

There was a rapid speed reduction in reaction to the first work zone warning sign and the 

DSFS, which was located about 500 feet after the first warning sign and was visible from 100 

feet upstream of the first sign. The plots revealed the major reaction was to the DSFS and 

there was a gradual speed reduction after drivers approached the taper, flashing arrow, and 

channelization.  

The reaction to the work area was a reduction of mean speed by about 5 mph for all 

groups. The mean speed of all five groups reduced to lower than work zone speed limit of 

45mph after this changepoint was detected. 

3.5.3.1 Analysis Results Summary 

The results of the multiple changepoint detection model for all groups in the work 

zone with a left lane closure and DSFS located at about 2,200 feet upstream of the taper are 

summarized in Table 3.8. The first changepoint was a relatively large speed reduction for all 

five groups in reaction to the DSFS. The mean speed reduction ranged from 4.4 to 4.9 mph.  

The next major changepoint was detected in response to the second work zone 

warning sign and the left lane merge sign with the attached advisory speed plate of 45 mph 

on both signs. Closed lane drivers’ mean speed was reduced by 5.6 mph as the highest 

reaction, and open lane drivers had 4.3 mph speed reduction for the lowest reaction in the 

range. The changepoint model plots revealed a period of relatively short stability after 

reacting to the DSFS for the segment created by the changepoint. The short stability is more 
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prevalent for male drivers and open lane groups. This means drivers were still processing the 

DSFS and continued to adjust their speed to work zone speed of 45 mph. This is suggesting 

the second detected changepoint in the model created a very short segment and the actual 

speed reduction effect by the DSFS can be measured in the next segment with a higher 

stability length. If the second changepont is combined with the next changepoint, which had 

a high segment length, the effect of DSFS reduced the mean speed by as much as 10.5 mph 

for closed lane drivers and as low as 8.7 mph for open lane drivers. There was a 16 and 

14.3% mean speed reduction for closed lane and open lane drivers, respectively. 

Table 3.8 Summary of multiple changepoints detected in work zone 3 

 

The next changepoint was observed at the start of the taper, flashing arrow, and 

channelization with a mean speed reduction of 6.4 mph for closed lane and 4.2 mph for open 

lane drivers. The mean speed reduction for overall, male, and female drivers was around 5.4 

mph. The final changepoint was detected in reaction to the work area. The mean speed 
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All 

(76 Traces)
63.0 -4.7 58.3 -4.7 53.6 -5.4 48.2 -5.0 43.2 -19.8

Male 

drivers 

(49 Traces)

63.1 -4.6 58.5 -4.7 53.8 -5.3 48.5 -5.0 43.5 -19.6

Female 

drivers 

(27 Traces)

62.8 -4.9 57.9 -4.7 53.2 -5.4 47.8 -5.4 42.4 -20.4

Closed lane 

(37 Traces)
65.6 -4.9 60.7 -5.6 55.1 -6.4 48.7 -5.1 43.6 -22.0

Open lane 

(39 Traces)
60.7 -4.4 56.3 -4.3 52.0 -4.2 47.8 -5.0 42.8 -17.9
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reduction ranged from 5.1 to 5.4 mph. The highest reduction was for female drivers, who 

reduced their speed to 42.4 mph in the work area. 

The overall speed reduction was relatively high among all five groups, which 

suggests the safety measures applied in this work zone were successful to get driver’s 

attention to reduce their speed to the desired work zone speed. The highest reduction was for 

the closed lane drivers with a mean speed reduction of 22 mph and the lowest speed 

reduction was for the open lane drivers by 17.9 mph. Female drivers’ mean speed was 

reduced from 62.8 to  42.4 mph, a 20.4 mph speed reduction. Male drivers’ mean speed was 

reduced by 19.6 mph. 

3.5.4 Left Lane Closure on Multi-lane Divided Rural Highway 

The analysis in this section is on work zone 4 which was over a multi-lane divided 

rural highway with the left lane closure. There were 55 speed time series traces of drivers 

traveled through this work zone. The roadway speed limit was 70 mph and there was no 

speed reduction for this work zone. The distributions of speed traces are shown in Appendix 

3. The speed distributions reveal the majoity of speeds hovering around 70 mph. The median 

speed s are very close to 70 mph. A series of safety features applied in this work zone 

included a first work zone warning sign, a left lane closed sign, taper point, and a flashing 

arrow. 

The model detected two changepoints for all five groups after the correction for 

overfitting. The average mean speed of overall group is around 70 mph upstream of the first 

work zone sign which was similar to the roadway speed limit. There was no reaction to the 

first work zone warning sign and the left lane closed sign.  



www.manaraa.com

126 

 

 

 

Figure 3.17 Developing multiple changepoint models for work zone four  

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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Drivers started to react to the work zone gradually at about 700 feet upstream of the 

taper and there was a large low spike in the mean speed at the vicinity of the taper area. The 

reaction started earlier at about 1000 feet upstream of the taper for female and open lane 

drivers. However, male and close lane drivers started to react closer to the work area at about 

400 feet upstream of the taper. The final changepoint occurred at the work area. The average 

mean speed was in the range of 62.2 to 63.5 mph after drivers reacted to the start of the work 

area, which was about 6.5 to 7.8 mph lower than the speed limit. 

3.5.4.1 Analysis Results Summary 

The results of multiple changepoint detection models utilizing the PELT algorithm 

for all five groups in work zone four with left lane closure on a multi-lane divided highway 

are summarized in Table 3.9. There was no reaction to the first work zone warning sign and a 

negligible reaction to the left lane closed sign.  

Table 3.9 Summary of multiple changepoints detected in work zone 4 
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Male drivers 

(21 Traces)
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Female drivers 

(34 Traces)
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(20 Traces)
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The first major detected changepoint was in reaction to the start of the taper and 

flashing arrow with a mean speed reduction ranging between 3.1 and 5.1 mph. Male drivers 

speed was reduced by 4.2 mph compared to 3.6 for female drivers. The final major 

changepoint was detected at the work area. Again, male drivers had a higher mean speed 

reduction than female drivers at 4.4 mph versus 3.5 mph. The speed reduction for closed lane 

and open lane groups were 4.4 mph and 3.3 mph, respectively.  

The overall mean speed reduction was relatively high due to the fact that there was no 

work zone speed limit. The mean speed reduction from upstream through the work area 

ranged between 7 and 9.5 mph. The drivers in the closed lane reduced their speed by 9.5 

mph. Male drivers’ mean speed reduction was 8.6 mph compared to 7.8 mph for female 

drivers. These results show drivers react to the risks mainly based on their perception. 

Although there was no speed reduction, drivers reduced their speed in reaction to the work 

zone conditions by as much as 9.5 mph. 

3.5.5 Right Lane Closure with a DSFS after Work Zone First Warning Sign 

In this section we changed the focus from the previous four work zones, which had 

left lane closures with different characteristics, to work zone five with a right lane closure. 

The PELT algorithm was applied to the 68 speed time series traces for vehicles traveled 

through this work zone with a DSFS on a rural 4-lane divided highway. A series of safety 

measures applied in this work zone including first warning sign with an attached 50 mph 

advisory plate, a DSFS, a second warning sign with an attached 45 mph advisory plate, a 

right lane closed sign with an attached 45 mph advisory plate, taper location, a flashing 

arrow, and a work zone speed limit sign. 
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Figure 3.18 Developing multiple changepoint models for work zone five  

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

a) 

(b) 

(c) 

(d) 

(e) 
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There were five main changepoints detected by the PELT model after the adjustment 

for overfitting for all five groups in the study. The mean speed upstream of the first warning 

sign was ranged from 61.6 to 63.4 mph. Open lane drivers were at the higher end with 63.4 

mph and female drivers, with a mean speed of 61.7 mph, were at the lower end of the range. 

According to the mean speed plots for all five groups, drivers started to gradually react to the 

first warning sign and more rapidly to the DSFS. The reaction to the DSFS was higher and 

more sudden for female drivers and closed (inside) lane drivers. Data indicate 18 out of 23 

female and 34 out of 53 male drivers’ traces occurred on the inside (closed) lane.  

Male drivers, who had more than twice traces as the female drivers in this work zone, 

maintained their speed after reacting to the DSFS for about 1,000 feet when they reacted 

sharply to the right lane closed sign at about 1,000 feet upstream of the taper. Female drivers’ 

reaction was more gradual toward the taper area after 4.7 mph speed reduction due to the 

DSFS. 

Female drivers also had the highest speed reduction at the start of the taper when they 

speed reduced by 9.4% from the previous stable segment, compared to 7.8% for male drivers. 

There was a sharp speed reduction in reaction to the work area for all groups, however, it was 

more prominent for male and outside (closed) lane drivers. 

3.5.5.1 Analysis Results Summary 

The summary results of all five groups in the analysis for work zone five are provided 

in Table 3.10. The open (outside) lane drivers traveled at 63.4 mph upstream of this work 

zone, 15% higher than the 55 mph roadway speed limit and about 34% higher than the 45 

mph work zone speed limit. Table 3.9 also shows all other groups were speeding in this work 

zone. All five groups had relatively substantial reactions to the first warning sign and the 
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DSFS ranging from 3.4 to 4.7 mph. Even the reduction from 63.4 to 57.4 mph among the 

different groups didn’t bring the mean speed down to the roadway speed limit, although the 

goal was to bring the speed down to the work zone speed limit of 45 mph.  

Female drivers had the highest speed reduction of 4.3 mph (7.2%) when reacted to the 

first warning sign and the DSFS. The reaction was lowest for the closed lane and male 

drivers with 3.3 mph (5.5%) and 3.1 mph (5.1%), respectively. The start of the taper, flashing 

arrow, and channelization speed reduction measures were successful to lower all groups’ 

speed by maximum of 4.9 mph, from a range of 55.8 to 47.8 mph. The mean speed for all 

five groups were in the range of 47.8 mph to 51.6 mph. There was a 9.8% speed reduction for 

female drivers compared to 7.8% for female drivers.   

Table 3.10 Summary of multiple changepoints detected in work zone 5 

 

 

The effect of the work area with the presence of equipment and workers was 

successful to be the last option to get drivers’ attention to reduce their speed to the posted 
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Female 

drivers 

(23 Traces)
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work zone speed of 45 mph, which worked for all groups travelling through this work zone. 

The mean speed produced a relatively large changepoint at the work area with a range of 3.8 

to 5 mph speed reduction. The mean speed was reduced from a maximum of 51.6 mph for 

the previous segment to a minimum of 44 mph in the new segment among all groups, this is 

about 15% reduction in mean speed between the last two segments. 

The overall reduction in mean speed from upstream through the work area was up to 

34.6% for open lane drivers. The lowest reduction was for male and all drivers of about 29%. 

female drivers had a relatively high reduction of about 34%.  

3.5.6 Left Shoulder Closure 

Work zone six demonstrates left shoulder closure on a 4-lane divided rural highway. 

There were 40 speed time series profiles in this work zone. The distributions of speed traces 

are shown in Appendix 3. The speed time series distribution reveals the vast majority of 

drivers driving at a speed higher than the roadway speed of 55 mph. There are a small 

proportion of female drivers driving below the speed limit. There was no required speed 

reduction in this work zone. A series of safety features applied in this work zone included a 

work zone first warning sign about 1,500 feet upstream of shoulder closure and shoulder 

closed sign. 

The PELT model results detected two major changepoints for all groups but female 

drivers whose model only returned one changepoint. The mean speed upstream of the first 

work zone warning sign ranged from 57.6 mph for inside lane to 64.4 mph for outside lane 

drivers. Male drivers’ speed at this location was 60.8 mph compared to 57.8 for female 

drivers. The first major changepoint was observed in response to the first work zone warning 

sign for all groups but female drivers.  
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Figure 3.19 Developing multiple changepoint models for work zone six  

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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The other changepoint occurred in reaction to the shoulder closure location and the 

work area. 

3.5.6.1 Analysis Results Summary 

The results of multiple changepoint detection models for all five groups in the work 

zone with left shoulder closure are summarized in Table 3.11. The average mean speed 

upstream of the first warning sign was from 5% to 17% higher than the roadway speed limit 

among all groups in this work zone. Outside lane drivers’ speed was 64.4 mph compared to 

57.6 mph for inside lane drivers. Male drivers mean speed was 60.8 mph compared to 57.8 

mph for female drivers.  

All groups had a slight reaction to the first work zone warning sign at about 1,500 

feet upstream of the shoulder closure location. The female drivers had no reaction to this 

sign.  

Table 3.11 Summary of multiple changepoints detected in work zone 6 
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The other major changepoint occurred at the start of the shoulder closure and the 

work area. The mean speed reduction was ranged between 1.9 to 2.2 mph.  

The overall mean speed reduction was 2.9 mph for all drivers. The female drivers’ 

mean speed was reduced to 55.6 mph after 2.2 mph reduction. After reacting to all provided 

safety measures, outside lane drivers’ mean speed reduced to 61.1, which was 6.1 miles 

higher than the speed limit. The presence of the safety features helped to reduce the overall 

speed slightly, though it was not enough for the drivers who were driving in the outside lane. 

3.5.7 Right Shoulder Closure 

The analysis in this section is on work zone seven with a right shoulder closure on a 

4-lane divided highway. There were 41 speed time series traces for drivers traveled through 

this work zone. The roadway speed limit was 65 mph and there was no work zone speed 

limit. The distributions of speed traces are shown in Appendix 3. The speed profiles 

distribution reveals less variability within each trace and more variability between the traces. 

A series of safety features applied in this work zone included the first warning sign at about 

2.700 feet, the second warning sign at about 1,000 feet upstream of the shoulder closure, and 

the shoulder closed sign.  

The multiple changepoint models detected only one changepoint in reaction to the 

closed shoulder and the work area. The mean speed plots reveal drivers mainly started to 

react to the shoulder closure right at the second warning sign. The male drivers, on the other 

hand, started to react later at about 200 feet upstream of the shoulder closure point. The data 

in the inside lane show a similar pattern of that for male drivers as 18 out of 23 male traces 

occurred on the inside lane. 
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Figure 3.20 Developing multiple changepoint models for work zone seven  

Left panel. Plot of mean speed of time series traces for overall traces (a), male drivers (b), 

female drivers (c), closed lane traces (d), and open lane traces (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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3.5.7.1 Analysis Results Summary 

The results of multiple changepoint detection models in work zone seven with right 

shoulder closure are summarized in Table 3.12. The average mean speed upstream of the first 

work zone warning sign all the way to the reaction point was around 65 mph for all groups 

which was same as speed limit. The male drivers mean speed was 63.9 mph compared to 

65.1 mph for female drivers. Also, the outside lane drivers’ mean speed was 66.4 mph and 

was 3.3 mph higher than that for inside lane drivers. Female drivers, who happened to drive 

mainly on the outside lane, had the highest reaction to the shoulder closure and the work area 

by reducing their speed by 1.3 mph. Male drivers reduced their overall speed by 0.9 mph 

from 63.9 to 63 mph.  

Table 3.12 Summary of multiple changepoints detected in work zone 7 
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3.5.8 Both Shoulders Closure 

The analysis in this section is on work zone eight with both shoulders closed on a 4-

lane divided highway. There were 49 speed time series profiles of drivers traveled through 

this work zone. The roadway speed limit was 65 mph and there was no work zone speed 

limit. The distributions of speed traces are shown in Appendix 3. The speed variation is about 

20 mph among all speed time series. The majority of speeds vary between 50 and 65 mph. A 

series of safety measures applied in this work zone included the first work zone warning sign 

at about 2,100 feet, the second work zone warning sign at about 1,700 feet, and the third 

work zone warning sign at about 650 feet upstream of shoulders closure.  

There were 4 changepoints detected in the model for all five groups. There was no 

data available upstream of the first warning sign. The average mean speed at the first warning 

sign, located at about 2,100 feet upstream of the shoulder closure, ranged between 59.4 and 

62.5 mph. The plots show the mean speed for all drivers increased until 1,350 feet upstream 

of the shoulder closure and remained steady until about 250 feet away from the closure point, 

where they started to react to the shoulder closure.  

3.5.8.1 Analysis Results Summary 

The results of multiple changepoint detection models for all 5 groups in the work 

zone with both shoulders closed are summarized in Table 3.13. The first changepoint was an 

increase of about 1 mph between the first shoulder work warning sign and the second and 

third warning signs. The next changepoint was in reaction to the shoulder closure and the 

first bridge work area. The mean speed reduction was 1.5 mph for all. The speed reduction 

was 1.7 mph for outside lane drivers as the highest decrease and 1.4 mph for male drivers as 

the lowest decrease.  
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Figure 3.21 Developing multiple changepoint models for work zone eight  

Left panel. Plot of mean speed of time series traces for overall (a), male drivers (b), female 

drivers (c), closed lane traces (d), and open lane (e). Right panel. Adjusted detected multiple 

changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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The next identified changepoint occurred at the second bridge work area on both 

sides of the roadway. There was an average speed reduction of 1.2 mph for all drivers. This 

was slightly higher for male drivers with 1.4 mph. The highest overall speed reduction was 

2.3 mph for outside lane drivers which reduced their speed from 62.5 to 60.2 mph. The 

lowest overall speed reduction was for inside lane drivers at 1.1 mph by changing their speed 

from 59.4 to 58.3 mph. Male drivers’ speed reduced from 62.3 to 60.4 mph and female 

drivers’ speed reduced to 59 mph from 60.8 mph. The last changepoint was an increase of 

speed by 1.1 mph for overall group when drivers reaching toward the end of construction 

zone. 

Table 3.13 Summary of multiple changepoints detected in work zone 8 

 

 

Mean 

Speed 

(mph)

1st warning 

sign

Change 

in Mean 

Speed 

(mph)

Mean Speed 

(mph)

Reaction to 2nd 

& 3rd WZ 

warning sign 

Change in 

Mean Speed 

(mph)

Mean Speed 

(mph)

Reaction to 

1st bridge 

work area

Change in 

Mean 

Speed 

(mph)

Mean Speed 

(mph)

Reaction to 

2nd bridge 

work area

Overall 

Mean 

Speed 

Reduction 

(mph)

All 

(49 Traces)
61.3 1.0 62.3 -1.5 60.8 -1.2 59.6 -1.7

Male drivers 

(19 Traces)
62.3 0.9 63.2 -1.4 61.8 -1.4 60.4 -1.9

Female drivers 

(30 Traces)
60.8 1.0 61.8 -1.6 60.2 -1.2 59.0 -1.8

Outside lane 

(32 Traces)
62.5 0.6 63.1 -1.7 61.4 -1.2 60.2 -2.3

Inside lane 

(17 Traces)
59.4 1.5 60.9 -1.5 59.4 -1.1 58.3 -1.1

Model 

Input Data 

Group

Multiple Changepoints PELT Model Results
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3.5.9 Lane Shift 

Work zone nine demonstrates a lane shift on 4-lane divided rural highway. There 

were 39 speed time series traces in this work zone. The speed distributions of time series 

profiles are shown in Appendix 3. The speed distributions show almost all drivers driving at 

a speed higher than the speed limit of 55 mph throughout the work zone’s designated 

boundaries. The only exception is female drivers who drive at a range of 50-54 mph. There 

was no speed reduction required for this work zone. A series of safety measures applied in 

this work zone included the first work zone warning sign, the highway guide sign, barrels 

tapering the shoulder, and lane shift with shoulders closed sign.  

There were 4 changepoints detected by PELT models for overall, male, and inside 

lane drivers, but only 3 changepoints detected for female and outside lane drivers. The plots 

show almost all drivers started to react to the first work zone warning sign by reducing their 

speed by about 1 mph. The only exception was open lane drivers who maintained their 

upstream speed and had no reaction to the first sign. All five groups increased their speed by 

as much as 5 mph after the first warning sign until they reached about 700 feet upstream of 

the highway guide sign, when they started to reduce their speed until 500 feet after the guide 

sign. There was a period of low speed increases before they started to react to the presence of 

barrels on left shoulder at about 1,000 feet upstream of the lane shift zone. The increased 

speed was for all groups except the inside lane drivers, who continuously decreased their 

speed to the lane shift location. 

Lastly, drivers of all groups reduced their speeds quickly in reaction to the lane shift 

with both shoulder closed sign. At the point where the lane shift started, outside lane drivers 

reduced their speed about 4.4 mph, which is still about 8% above the speed limit  
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Figure 3.22 Developing multiple changepoint models for work zone seven  

Left panel. Plot of mean speed of time series traces in work zone 9 for overall (a), male 

drivers (b), female drivers (c), closed lane traces (d), and open lane (e). Right panel. Adjusted 

detected multiple changepoints for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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3.5.9.1 Analysis Results Summary 

The results of multiple changepoint detection models for all five groups in the work 

zone with lane shift situation are summarized in Table 3.14. The average mean speed at the 

upstream of the first warning sign for all groups ranged from 59.2 mph for inside lane to 61.2 

mph for outside lane drivers. It should be noted that 12 out of 21 traces in the outside lane 

and 7 out of 16 traces in the inside lane were female drivers. Male drivers’ upstream speed 

was 59.5 mph compared to 61 mph for female drivers. 

The first changepoint in the model was an increase of between 2.6 and 3.3 mph for all 

five groups. The increased speed occurred between the first work zone warning sign at about 

1.1 mile upstream of the lane shift location and close to the second warning sign at about 0.5 

mile upstream of the work area.  

Table 3.14 Summary of multiple changepoints detected in work zone 9 

 

Mean 

Speed 

(mph)

Upstream

Change 

in Mean 

Speed 

(mph)

Mean Speed 

(mph)

between 1st & 

2nd WZ 

warning sign 

Change in 

Mean Speed 

(mph)

Mean Speed 

(mph)

 2nd WZ 

warning sign

Change in 

Mean 

Speed 

(mph)

Mean Speed 

(mph)

Reaction to 

lane shift 

Overall 

Mean 

Speed 

Reduction 

(mph)

All 

(39 Traces)
60.2 3.3 63.5 -1.3 62.2 -3.1 59.1 -1.1

Male drivers 

(18 Traces)
59.5 2.6 62.1 -1.4 60.7 -2.8 57.9 -1.6

Female drivers 

(19 Traces)
61.0 3.0 64.0 -1.3 62.7 -2.5 60.2 -0.8

Outside lane 

(21 Traces)
61.2 2.7 63.9 -1.1 62.8 -3.3 59.5 -1.7

Inside lane 

(16 Traces)
59.2 2.8 62.0 -1.3 60.7 -2.2 58.5 -0.7

Model 

Input Data 

Group

Multiple Changepoints PELT Model Results
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The next changepoint was in reaction to the highway guide sign, which resulted in a 

mean speed reduction of up to 1.4 mph for male drivers and 1.1 mph for outside lane drivers. 

The last changepoint was detected as drivers approached the lane shift location and 

the work area, with the highest decrease for outside lane drivers at 3.3 mph, and a decrease of 

only 2.2 mph for inside lane drivers. Male drivers had slightly higher speed reductions at the 

lane shift area with 2.8 mph compared to 2.5 mph for female drivers. 

The overall mean speed reduction in reaction to a series of safety measures in this 

work zone was about 1.8% for overall drivers. The range of mean speed reductions was 

between 1.3% and 2.8% for female and outside lane drivers, respectively. The main reaction 

started closer to the lane shift area and before the highway guide sign. When mean speed 

reductions were measured from the upstream of the guide sign to the lane shift area, a range 

of 1.8% to 7.2% speed reductions were observed among all groups. The large distance 

between the first and second work zone warning sign caused an increase of speed due to no 

work zone activity in this area.   

3.6 Summary and Discussion 

The objective of this research was to understand how drivers interact with various 

work zone characteristics and how a series of safety measures applied in work zones attracts 

drivers’ attention to comply with work zone requirements. This was done by developing 

multiple changepoint models to effectively and efficiently find the location of changepoint in 

mean speed in reaction to various safety features in the work zone. A total of 9 work zones 

which had 471 time series speed profiles and involved 230 unique drivers, were evaluated. 

The findings of this study could be used to better understand drivers, behavior in work zones 

and provide recommendations to transportation agencies about their traffic control plans, 
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safety measures layout, and the use of a specific safety feature in work zones. This study 

analyzed work zones on different roadway types, with various work zone configurations, and 

diverse safety measures layout. 

3.6.1 Speed Profile Dispersion 

The study examined the safety measures on four different work zones with left lane 

closed situation, one work zone with right lane closure, three work zones each with left, 

right, or both shoulder closures, and one work zone with lane shift condition. The objective 

for selection of these work zones was to examine all possible safety feature types, in different 

layouts, and on diverse roadway types based on availability of an acceptable number of speed 

time series traces. The speed profiles distributions for all nine work zones are provided as 

boxplots in Figure 3.23. 

 

Figure 3.23 Speed profile distributions for all 9 work zones in the study 

Work zones 1 through 4 (WZ-1 – WZ-4) have left lane closed configurations and are 

demonstrated with orange boxes. Work zone 5 is right lane closed in a red box, work zone 6 
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to 8 with green boxes are shoulder closure situations, and a lane shift represented by work 

zone 9 with a pink box.  The red dashed line represents a work zone speed limit of 45 mph 

for work zones 3 and 5. The work zone speed limit of 55 mph for work zones 1, 2, 6, and 9 is 

demonstrated by an orange dashed line. The black dashed line shows the work zone speed 

limit of 65 mph for work zones 7 and 8 which is the same as the roadway speed limit.  

There is a vast speed dispersion for work zones with lane closures and, more 

specifically, for those which had low speed limits of 45 mph. The exceptions are work zone 

2, and 4 which show lower speed variations compared to other lane closure scenarios. The 

safety measures layout in work zone 2 was different as it started with a lane merge sign and 

was followed by a DMS which was about 1,400 feet upstream of the transition area. There is 

a possibility that other safety measures exist prior to the lane merge sign, which might be the 

reason for the lower speed variations. The low speed variation of work zone 4 might be due 

to a no speed limit reduction requirement.  

The speed variations for shoulder closures and lane shift are much lower compared to 

lane closure conditions. This may be due to the fact that no speed reductions were required 

for these situations. The colored boxes represent the middle 50% spread of speed data with 

25 percentile as lower spread and 75 percentile as higher spread. The speed data also shows a 

higher spread for lane closed work zones. The spread for the middle 50% of data ranged from 

7 to about 13 mph for lane closures, about 3 to 7 mph for shoulder closures, and about 5 mph 

for lane shift conditions. Some of the speed variations can be explained by speed limit 

reductions required in some work zones with lane closures. There are some speed variations 

which cannot be explained by speed limit reduction, types and locations of the safety 

measures might be the source of those variation. 
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3.6.1.1 Speed Profile Dispersion by Gender 

Speed time series profiles in each work zone were studied for all and various 

comparable groups of traces in that work zone. The study analyzed the speed profiles for 

male, female, open lane, and closed lane drivers. The speed profile distributions for male and 

female drivers involved in all 9 work zones are shown in Figure 3.24. Work zones 

configurations studied are divided into 4 categories, including left lane closed (WZ-1 to WZ-

4) represented by a light-yellow shade, right lane closed (WZ-5) denoted by a light-red 

shade, shoulder closed (WZ-6 to WZ-8) demonstrated by a light-green shade, and lane shift 

(WZ-9) represented by a light-pink shade.  

 

Figure 3.24 Speed profile distributions by gender for all 9 work zones in the study 

The y-axis represents the vehicle speed in mph and the x-axis shows 9 pairs of 

boxplots, two for each work zone. The 1F represents female drivers’ speed profile 

distribution in pink and 1M denotes male drivers’ speed traces distribution with a blue color 
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for the first pair of boxplots in work zone 1. Similarly, each pair of boxplots from 2F and 2M 

to 9F and 9M shows the female and male drivers’ speed profile distributions for the 

corresponding work zones.  

There is a high speed dispersion in work zones 1, 3, and 5 which involved lane 

closure conditions. The range and 50% middle spread is pretty similar for both genders; 

however, the median speeds of male drivers are slightly higher compared to female drivers in 

all lane closure scenarios. More than 75% of the speeds are higher than work zone speed 

limits in work zones with lane closures and work zone speed limits are10 mph lower than the 

actual roadway speed limits. The speed variation is relatively low for work zone 2 which has 

a similar 10 mph speed reduction but different safety measures’ layout. The middle 50% 

spread is about 8 mph for both genders compared to 11 mph for work zone 1. Female drivers’ 

speed in work zone 2 is slightly right-skewed; more speed traces tend toward the lower 

spread while male drivers’ speeds tend more toward the higher spread. Work zone 4 involves 

left lane closure with no speed limit reduction on a multi-lane divided highway with a 70 

mph roadway speed limit. The middle 50% spread varies about 8 mph for both genders. The 

median is 66 and 69mph for female and male drivers, respectively. The medians here are 

lower than the posted speed limit of 70 mph. It shows reducing the speed limit does not 

necessarily cause drivers to slow down. It is the safety measures and their layouts which have 

a greater effect in getting drivers’ attention to slow down. 

The lowest variations are when road work involves no lane closures as is the case for 

work zones 6 through 9. The speed middle 50% spread variation is about 4-5 mph for male 

drivers and 5-7 mph for female drivers when no speed reduction is required. The median 

speed is about 2 mph higher for male drivers in left shoulder closur and both shoulder 
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closures, similar in right shoulder closure, and about 1.5 mph higher for female drivers in 

lane shift scenarios.  

The highest speed variations for both genders belong to work zones 3 and 5 with left 

lane and right lane closures, respectively. The work zone speed limit for both work zones is 

45mph. The range of speed traces is between 25 and 65 mph for female drivers and between 

30 and 78 mph for male drivers. The median speed for both genders is around 52 mph in 

work zone 3 with the spread of middle 50% data from 45 to 59 mph. The female speeds are 

slightly right skewed which means more speed traces tend toward the lower range of spread 

with higher concentrations toward the higher range of spread for male drivers. For work zone 

5, the median speed for male drivers is 55 mph compared to 52 mph for female drivers. The 

speed dispersion is higher for male drivers, ranged from 30 to 78 mph with some outliers 

outside both low and high ranges. The speed  for female drivers scattered between 35 and 74 

mph with no outliers outside the ranges. The 50% middle spread is quite identical for both 

groups. 

3.6.1.2 Speed Profile Dispersion by Driving Lane 

The speed profile distributions for closed and open lane traces for all 9 work zones 

are shown in Figure 3.25. The x-axis shows two boxplots for each work zone. The 1CL 

represents closed lane speed traces in red and 1OP shows open lane speed profiles with a 

green color in work zone 1. Similarly, each pair of boxplots from 2CL and 2OP to 5CL and 

5OP represent closed lane and open lane and from 6IN and 6OUT to 9IN and 9OUT show 

inside and outside lane speed profiles for the corresponding work zones. 
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Figure 3.25 Speed profile distributions by driving lane for all 9 work zones in the study 

The speed time series distributions in closed and open lane are compared. The closed 

lanes are outside lane for all work zones but 5, which has a right lane closure (inside lane 

closed). The median speed is higher in closed lane or outside lane across all work zones 

except 2 and 5, which have similar median speed in both closed and open lanes. The median 

speed for work zones with no lane closure is about 2 to 6 mph higher in outside lane with 

lane shift in lower and left shoulder closure in the higher end of the range. In work zones 

with lane closure conditions, the range of median speed in closed lane is between zero and 3 

mph higher compared to open lane. The speed profiles 50% middle spread is slightly higher 

for the closed lane speed traces across the majority of the work zone with lane closures and 

lane shift. The exceptions are work zone 2 and 5, which have a higher spread for open lane. 

The spread in work zones with shoulder closures is slightly higher for open lane compared to 

closed lane.  
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Overall, there was a substantial speed variations for lane closures and speed reduction 

scenarios. However, the magnitude of dispersion depends on the safety measures’ layout. It 

also shows less variation for the case of lane closures with no speed reductions and even 

lower variations for the shoulder closures and lane shift scenarios with no speed reductions. 

Male drivers’ median speed was higher than that for female drivers. The median speed was 

also higher in closed lane when compared to open lane traces, particularly when there was no 

lane closures in work zones. Some of the speed dispersion could be explained by lane 

closures and speed reductions but still all possible sources and main locations of variations 

needed to be investigated. 

3.6.2 Countermeasures Effectiveness 

To examine the effects of safety measures’ layout in changing driver behavior, the 

potential changepoints in the mean speed over various work zones with different 

characteristics were studied. A multiple changepoint analysis model was used to create a 

model which predicted driver reaction to various work zone safety measures. Speed time 

series data were used to develop changepoint models by utilizing PELT algorithm to 

accurately and efficiently estimate the locations of multiple changepoints for the mean of 

time series traces over 9 work zones with different characteristics. The results of changepoint 

models revealed how different countermeasure or series of countermeasures affected drivers 

to react and to reduce their speeds and are shown in Table 3.15. The changepoint models for 

various groups within the work zone identified if their reactions to a similar safety measure 

were different. In some locations, the effect of an individual safety measure was not detected 

due to the close proximity of the safety measures and the simultaneous effect on drivers. 

 



www.manaraa.com

152 

 

 

Table 3.15 Multiple changepoint results for all work zones 

 

Speed 

Time 

Series 

Group

Road 

way 

Speed 

Limit 

(mph)

WZ 

Speed 

Limit 

(mph)

Mean 

speed 

Upstram 

(mph)

Mean 

Speed 

Work 

Area 

(mph)

Overall 66.8 -1.5 -2.1% -5 -7.6% 52.2 -14.5 -24.4%

Male 68.5 -1.6 -2.4% -5.3 -8.0% 53.5 -15 -24.6%

Female 65.6 -1.7 -2.6% -5.1 -8.1% 51.1 -14.5 -24.9%

Closed lane 68.1 0 0.0% -5.5 -8.4% 51.4 -16.7 -27.9%

Open lane 65.2 -1.5 -2.3% -4 -6.3% 53.4 -11.8 -19.9%

Overall 61.9 -2.1 -3.5% -4.6 -7.7% 55.4 -6.5 -11.1%

Male 63.5 -2.3 -3.7% -3.9 -6.3% 57 -6.5 -10.8%

Female 61.1 -2.6 -4.3% -5 -8.5% 54.7 -6.4 -11.1%

Closed lane 63.8 -2.6 -4.2% -6.4 -10.6% 55.1 -8.7 -14.6%

Open lane 59.2 2.8 4.6% 1.5 2.5% 58.5 -0.7 -1.2%

Overall 63 -4.7 -7.7% -14.8 -26.6% 43.2 -19.8 -37.3%

Male 63.1 -4.6 -7.6% -14.6 -26.2% 43.5 -19.6 -36.8%

Female 62.8 -4.9 -8.1% -15 -27.1% 42.4 -20.4 -38.8%

Closed lane 65.6 -4.9 -7.8% -16.9 -29.6% 43.6 -22 -40.3%

Open lane 60.7 -4.4 -7.5% -12.9 -23.8% 42.8 -17.9 -34.6%

Overall 70.3 -3.6 -5.3% 62.7 -7.6 -11.4%

Male 71.3 -4.2 -6.1% 62.7 -8.6 -12.8%

Female 70.3 -4.3 -6.3% 62.5 -7.8 -11.7%

Closed lane 73 -5.1 -7.2% 63.5 -9.5 -13.9%

Open lane 69.2 -3.7 -5.5% 62.2 -7 -10.7%

Overall 62 -3.5 -5.8% -11.8 -21.0% 46.1 -15.9 -29.4%

Male 62.4 -3.1 -5.1% -10.8 -18.9% 46.7 -15.7 -28.8%

Female 61.7 -4.3 -7.2% -13.9 -25.4% 44 -17.7 -33.5%

Closed lane 61.6 -3.3 -5.5% -11.2 -20.0% 46.4 -15.2 -28.1%

Open lane 63.4 -4.6 -7.5% -13.7 -24.2% 44.7 -18.7 -34.6%

Overall 59.6 -1 -1.7% -2.9 -5.0% 56.7 -2.9 -5.0%

Male 60.8 -1.2 -2.0% -3.1 -5.2% 57.7 -3.1 -5.2%

Female 57.8 0 0.0% -2.2 -3.9% 55.6 -2.2 -3.9%

Outside lane 64.4 -1.2 -1.9% -3.3 -5.3% 61.1 -3.3 -5.3%

Inside lane 57.6 -0.8 -1.4% -3 -5.3% 54.6 -3 -5.3%

Overall 64.4 -0.9 -1.4% 63.5 -0.9 -1.4%

Male 63.9 -0.9 -1.4% 63 -0.9 -1.4%

Female 65.1 -1.3 -2.0% 63.8 -1.3 -2.0%

Outside lane 66.4 -1.3 -2.0% 65.1 -1.3 -2.0%

Inside lane 63.1 -0.7 -1.1% 62.4 -0.7 -1.1%

Overall 61.3 1 1.6% -0.5 -0.8% 60.8 -0.5 -0.8%

Male 62.3 0.9 1.4% -0.5 -0.8% 61.8 -0.5 -0.8%

Female 60.8 1 1.6% -0.6 -1.0% 60.2 -0.6 -1.0%

Outside lane 62.5 0.6 1.0% -1.1 -1.8% 61.4 -1.1 -1.8%

Inside lane 59.4 1.5 2.5% 0 0.0% 59.4 0 0.0%

Overall 60.2 3.3 5.3% -1.1 -1.8% 59.1 -1.1 -1.8%

Male 59.5 2.6 4.3% -1.6 -2.7% 57.9 -1.6 -2.7%

Female 61 3 4.8% -0.8 -1.3% 60.2 -0.8 -1.3%

Outside lane 61.2 2.7 4.3% -1.7 -2.8% 59.5 -1.7 -2.8%

Inside lane 59.2 2.8 4.6% -0.7 -1.2% 58.5 -0.7 -1.2%

Work 

Zone

Work Zone 

Characteristics

Change in 

Mean Speed  

due to 1st 

Warning Sign 

/DMS / DSFS 

(mph)

Change in 

Mean Speed 

at Taper 

Area (mph)

Change in 

Mean Speed 

at Work Area 

(mph)

Change in Mean Speed from the Upstream detected at Safety Measures' Location

1

Left lane closed 

4-lane divided 

DMS after 1st 

WZ warning sign

65 55

2

Left lane closed 

4-lane divided 

DMS after lane 

closed sign

65 55

3

Left lane closed 

4-lane divided 

DSFS after 1st 

WZ warning sign

55 45

4

Left lane closed 

multi-lane 

divided 

70 70

5

Right lane closed 

4-lane divided 

DSFS 

55 45

6

Left shoulder 

closed

4-lane divided 

55 55

9
Lane shift

4-lane divided 
55 55

7

Right shoulder 

closed

4-lane divided 

65 65

8

Both shoulder 

closed

4-lane divided 

65 65
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3.6.2.1 Static Signs 

The models’ results revealed a minimal or no reactions to the first and second 

warning signs when they were applied as standalone signs like work zones 6-8 with shoulder 

closures, 9 with lane shift, and 4 with closed lane characteristics. The effect of the static 

warning signs were detected when they were combined with other signs such as the DMS in 

work zone 1 and the DSFS in work zones 3 and 5. The other static signs in all work zones 

included lane closed signs and speed limit signs were combined with other safety measures 

such as tapering, channelization, and flashing arrows. The effect of these signs was not 

individually detected in the developed multiple changepoint models in various work zones. 

3.6.2.2 Dynamic Message Sign (DMS) 

There were reactions to the first work zone warning sign when it was combined with 

a DMS, as is the case in work zone 1. The reaction varied among the involved categories. 

The closed lane drivers had no reaction to the combination of these two safety measures, 

while female and male drivers reduced their speed by 2.6 and 2.4%, respectively. The overall 

reaction was about 2.1% in speed reduction to the combination of these two safety features. 

When a DMS was applied after the lane closed sign at about 1,400 feet upstream of 

the taper area, drivers had higher speed reductions as a result. The female drivers reduced 

their speed by as much as 4.3%, male drivers 3.7%, closed lane drivers 4.2%, and 3.5% for 

overall traces. This was about an average of 50% higher speed reduction compared to the 

case when the DMS was applied at about 4,300 feet upstream of taper area. The open lane 

drivers showed no reaction to the DMS and their speed was actually increased by 4.6%. This 

may be due to their lower speed before approaching the DMS compared to other categories. 



www.manaraa.com

154 

 

 

The effect of the DMS individually could not identified as changepoint detected over 

combinations of safety measures. 

3.6.2.3 Dynamic Speed Feedback Sign (DSFS) 

The combinations of the first work zone warning sign and the DSFS were more 

successful in getting drivers’ attention to reduce their speed. The effect was higher when they 

were applied in work zone 3 with a left lane closed configuration. The average speed 

reductions was 7.7% compared to 6.2% for a right lane closure in work zone 5. Female 

drivers had the highest reaction with an 8.1% speed reduction and open lane drivers had a 

7.5% speed reduction as the lowest reaction in work zone 3.  The case was different for open 

lane drivers in work zone 5 as the open lane (outside lane) drivers had the highest reaction of 

7.5%, with the lowest reaction for the male drivers by a 5.1% speed reduction. The female 

drivers’ reaction to the combined effects of the first warning sign and the DSFS was 7% and 

35% higher than male drivers in work zones 3 and 5, respectively. The highest reaction was 

for open lane (outside lane) drivers in work zone 5 at 31% over closed lane drivers. 

3.6.2.4 Tapering, Channelization, and Flashing Arrow 

The combinations of tapering, channelization, and flashing arrow were very effective 

in getting drivers attention to slow down in work zones with lane closure configurations. The 

greatest reduction in speed was observed at work zones 3 and 5 with a 45 mph work zone 

speed limit. The highest speed reduction was for closed lane drivers by 22% for work zone 3 

with a left lane closure, while it was a 15% reduction for the same lane in right lane closure 

scenario at work zone 5. The speed reduction of about 19% was observed for female drivers 

in work zone 3 and 5. The speed reduction for male drivers was 14% in work zone 5 
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compared to 18.7% in work zone 3. It appears the application of these safety measures were 

more effective in left lane closure compared to the right lane closure scenario by about 22%. 

The combined effect of these safety measures was ranged between 2% to 8.5% for all 

other left lane closures scenarios and participating drivers’ groups. The highest reduction was 

for closed lane drivers in work zone 1 and the lowest was about 2% for open lane drivers in 

work zone 2. The reactions ranged from 4% to 8.4% among all groups and were virtually 

similar for work zone 1 with 10 mph speed reduction and work zone 4 with no speed 

reduction. The lowest overall reaction was for work zone 2 by a 4.3% reduction in mean 

speed. 

There was no flashing arrow in work zones with shoulder closures and lane shift 

scenarios. The reactions to shoulder closures and lane shift were observed to be lower than 

for lane closure scenarios, ranged from 0.8% for male drivers in both shoulder closures in 

work zone 8 to a 4% for inside lane drivers in work zone 6 with left shoulder closure. 

Interestingly, outside lane drivers had lower reaction to the left shoulder closure with 3.3% 

speed reduction. 

3.6.2.5 Combined Effect of All Safety Features at the Work Area 

The combined effects of different safety measures layout will be beneficial in finding 

the most effective safety measures layout and recommendations for effective work zone 

safety plans. The combinations of the DSFS the flashing arrow, tapering and channelization 

had the highest combined effect in work zone 3 and 5 with an overall speed reduction of 

37.3% and 29.4%, respectively. The highest reaction among all work zones with lane closure 

scenarios attributed to closed lane drivers, ranging from 14.6% to 40.3% speed reduction in 

work zone 2 and 3, respectively. The only exception was the right lane closed scenario of 
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work zone 5 in which open (outside) lane drivers had the highest reaction, reducing their 

speed by 34.6%.  

There was a negligible effect of safety features layout in work zones with lane shift 

and shoulder closures as there were no speed reduction requirements. However, in the case of 

work zone 4 with lane closure and no speed reduction, the overall speed was reduced by as 

much as 14% for closed lane drivers in reaction to safety measures layout. Explanations for 

the speed reduction may include the roadway speed limit of 70 mph, drivers’ perception of 

risk, one out of three lanes closed, and the presence of equipment and workers. These 

findings suggest that careful safety planning with a combination of effective safety features 

could get drivers’ attention to slow down approaching a work area. 

3.6.3 Reaction by Gender 

The results of multiple changepoint analysis using the PELT algorithm revealed 

female drivers’ reaction to the first warning sign and the DSFS was about 35% higher in right 

lane closure and about 7% higher speed reduction in left lane closure scenarios compared to 

male drivers. In the case of DMS applications in work zone 1 and 2, female drivers reacted 

by 10.8% when a DMS was after work zone 1st warning sign and 16.4% higher when a DMS 

was closer to taper area at about 1,400 feet.  

Female drivers also showed higher reactions to the presence of tapering, flashing 

arrow, and channelization. The speed reduction for female drivers was about 45% higher 

when a DMS was closer to a taper area and 27% higher at right lane closure scenarios. 

There is a negligible difference between the two genders when reacting to the 

combined effects of tapering, channelization, and flashing arrow in left lane closure cases.  
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3.6.4 Reaction by Lane 

Drivers in closed lane were driving at an average of 6% higher speed than open lane 

drivers. The reaction to the work zone first warning sign was much lower for closed lane 

drivers in the majority of closure cases. The speed reduction ranged between 10% and more 

than 200% lower compared to open lane drivers in the same scenarios. The only exception 

was in work zone 3 during which closed lane drivers had about 3% higher speed reduction 

than open lane drivers.  

The highest reaction difference for closed and open lane drivers was observed at 

taper, flashing arrow, and channelization where speed reductions for closed lane drivers was 

3 times as much as that for open lane drivers in lane closure scenarios. The only exception 

was when open lane drivers had a 20% higher reaction to these safety measures compared to 

closed lane drivers. 

The reaction at the work area was also higher for closed lane drivers by as much as 

36% higher speed reduction when compared to open lane drivers. 

The overall effect of all safety measures combined at the work area also showed a 

higher speed reduction for closed lane drivers in work zones with lane closure conditions by 

as much as 170% for the work zone 2 when compared to open lane drivers. The only 

exception again was right lane closed case when open lane drivers had about 21% higher 

speed reduction than closed lane drivers.  

3.7 Conclusions 

This study was successful in identifying the effectiveness of safety measures in 

various work zones with different characteristics. The PELT algorithm in multiple 
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changepoint analysis effectively developed models to detect driver’s interactions with a 

series of safety features in a variety of work zones with different traffic control plans. 

There was a higher speed variations for lane closure and speed reduction scenarios. 

However, the magnitude of dispersion depended on the safety measures layout. It also 

displayed less variation for the case of lane closure with no speed reductions and even lower 

variations for the shoulder closures and lane shift scenarios with no speed reductions. Male 

drivers’ median speed was higher than that for female drivers. The median speed was also 

higher in closed lane when compared to open lane traces, particularly when there was no lane 

closures in work zones. Some of the speed dispersion could be explained by lane closures 

and speed reductions.  

The model of a work zone with lane closure and no speed reduction proved to be very 

effective in getting drivers’ attention. Drivers were shown to adapt their speed based on their 

risk perception. The low number of safety measures in combination with no speed reduction 

caused substantially less speed variation and effective speed reduction. Also, having very low 

work zone speed limit was not effective in slowing the traffic down at the upstream and 

continuing to the taper area. 

The results of all different work zones changepoint models revealed female drivers 

overall had slightly higher reactions to the safety measures applied from the first warning 

sign up to the taper location compared to male drivers. It was also observed that closed lane 

drivers were less reactive to the safety features applied prior to the taper area. The exceptions 

were DSFS and DMS when located closer to the taper area. 

This study found static warning signs are not effective in getting driver’s attention 

unless it was combined with a DMS. However, the effect of a DMS are more pronounced 
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when they are applied closer to the taper area. The DSFS in combination with the first 

warning sign were found to be the most effective safety features to attract drivers’ attention 

to slow down in work zones. The combinations of first warning sign and DSFS along with 

flashing arrow, tapering and channelization had the highest combined effect in reducing 

traffic speed in the work zone by as much as 40%. 

The study also found that the longer distance between the first and second work zone 

warning signs, with no indication of work zone activities in between, caused drivers to 

eventually ignore the signs and increase their speed. This in turn may affect the credibility of 

work zone warning signs. 

The findings of this research, based on observations of changepoint models, suggest 

applying more efficient safety features, such as DSFS and DMS in closer proximity to the 

taper area are very effective to capture driver’s attention to slow down in work zones. The 

presence of DSFS on both side of the roadway may be more effective to get outside lane 

drivers to slow down earlier prior to the taper location. The large distance between the 

warning signs with no activity causes drivers ignore the sign and maintain their upstream 

speed. The combination of work zone warning signs with the attached advisory speed plate 

and the DSFS at 2,640 and 2,100 feet upstream of the taper location was a very successful 

safety strategy to slow the traffic before reaching to the taper area. 

It was desired to find the effectiveness of any individual safety feature in work zones, 

however the proximity of safety features caused the changepoint model to detect the 

combined effects of the features. This will be addressed by using the methods of functional 

data analysis to convert the discrete observations to functional data and smoothing the noises. 

The smoothed data can be utilized to observe the speed of vehicle at a desired distance to any 
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safety measure and identify if the safety measure had a significant influence on drivers to 

slow down in the work zone. The effectiveness of any individual safety feature, which could 

not be detected by changepoint models, will be investigated in the next chapter. 

3.7.1 Limitations 

The study constraint was the low number of work zones with similar configurations 

and TTCD layout. Even work zones with identical safety features layout had different 

locations for the placement of safety features in regard to the taper location. Since this was 

the naturalistic driving in a natural environment, we had no control over the work zone 

configurations and safety measures layout unlike the experimental setups. The larger sample 

size is always preferred to minimize the effects of outliers. Having a higher number of traces 

for all work zone configurations and all sub-groups of data would help to give more 

statistical power to our study results. 

Although the PELT multiple changepoint package is an exact method utilized to 

accurately and efficiently detect changepoints, it has some drawbacks due to the requirement 

of a manual penalty to avoid over/under-fitting. Therefore, selecting the appropriate penalty 

may be subjective. The appropriate value, however, can be selected by conducting a 

sensitivity analysis through testing different penalty values until finding the one that looks 

appropriate for the dataset and problem in hand. 
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3.9 Appendix 3: Speed Profile Distributions 

Left Lane Closure with a DMS after Lane Merge Sign 

 Overall traces 

 

 Male drivers’ traces 

 

 Female drivers’ traces 

 
 Closed lane traces 
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 Open lane traces 

 

Left Lane Closure with a DSFS after 1st Work Zone Warning Sign 

 Overall traces 

 

 Male drivers’ traces 

 

 Female drivers’ traces 
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 Closed lane traces 

 
 Open lane traces 

 

Left Lane Closure on multi-lane divided rural highway 

 Overall traces 

 

 Male drivers’ traces 
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 Female drivers’ traces 

 
 Closed lane traces 

 
 Open lane traces 

 

Right Lane Closure with DSFS after Work Zone 1st Warning Sign 

 Overall traces 
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 Male drivers’ traces 

 
 Female drivers’ traces 

 
 Closed lane traces 

 
 Open lane traces 
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Left Shoulder Closed 

 Overall traces 

 

 Male drivers’ traces 

 

 Female drivers’ traces 

 
 Outside lane traces 
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 Inside lane traces 

 

Right Shoulder Closed 

 Overall traces 

 
 

 Male drivers’ traces 

 

 Female drivers’ traces 
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 Outside lane traces 

 
 Inside lane traces 

 

Both Shoulder Closed 

 Overall traces 

 

 Male drivers’ traces 
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 Female drivers’ traces 

 
 Outside lane traces 

 
 Inside lane traces 

 

Lane Shift 

 Overall traces 

 



www.manaraa.com

174 

 

 

 Male drivers’ traces 

 

 Female drivers’ traces 

 

 Outside lane traces 

 

 Inside lane traces 
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CHAPTER 4.  DRIVER BEHAVIOR STUDY BY FUNCTIONAL DATA 

ANALYSIS OF SPEED PROFILES IN WORK ZONES USING SHRP 

2 NATURALISTIC DRIVING STUDY DATA  
Modified from a paper to be submitted to the Transportation Research Record 

Hossein Naraghi and Omar Smadi 

Abstract 

The dynamic of highway work zones create a constantly changing environment with 

varying level of risk that elevates the safety hazards. There was an increase of about 11% in 

work zone-related fatalities from 2010 to 2014 despite a small decrease in non-work zone-

related fatalities in the U.S. (1). Work zone safety is a major concern for construction 

workers, the travelling publics, and transportation safety agencies. Work zone impacts on 

safety creates a strong need to protect road users and construction workers. 

Speeding and speed variations are considered to be major unsafe driver behaviors that 

elevate the safety risks in the work zone. The Federal Highway Administration (FHWA) 

crash facts indicate speeding as a contributing factor to 28% of work zone crashes in 2014. A 

series of countermeasures have been used to get drivers’ attention to comply with work zone 

conditions and reduce their speed. There is limited information about which safety features 

are the most effective in encouraging drivers to slow down in work zones. 

The features of functional data analysis were utilized to summarize driver behavior by 

analyzing speed time series data from SHRP 2 NDS. The main objective of the analysis is to 

identify the effectiveness of every countermeasure utilized in the work zone to encourage 

safe driving. Various safety measures such as static warning signs, the DMS, the DSFS, and 

other similar signs were investigated. The effectiveness measured over five work zones, four 

with lane closures and one with a lane shift scenarios. An overall model was created for each 

work zone which was further broken down to individual models involving male, female, 
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open lane, and closed lane drivers to observe similarity and differences between each 

comparable group. 

The speed trajectory time series data from the SHRP 2 NDS work zones at a rate of 

0.1 seconds (10 HZ) were used to study driver behavior associated with various safety 

features applied in work zones. The functional data created opportunities to find mean speed 

and speed variations at a legible distance upstream of the safety measures. The change in 

mean speed in reaction to the applied safety feature was calculated to learn if it was 

significantly effective in reducing speed. Also, the speed variability associated with each 

safety measure was measured to observe the effect of the safety feature on speed variability. 

4.1 Introduction 

4.1.1 Background 

The presence of a work zone increases disturbance to traffic flow and produce a high 

cognitive work load for drivers and heightening safety risks. According to the National Work 

Zone Safety Clearinghouse, there was an increase of about 11% in work zone-related 

fatalities from 2010 to 2014 despite a small decrease in non-work zone-related fatalities in 

the U.S. (1). Work zone safety is a major concern for construction workers, the travelling 

publics, and transportation safety professionals. Work zone impacts on safety creates a strong 

need to protect road users and construction workers.  

As previous research revealed, there are a large number of factors associated with 

work zone safety, but it is mainly concluded that speeding and distractions are the main risky 

driver behaviors in work zones. Several studies identified human factors as the major 

contributing factor to nearly 93% of all crashes (Rumar et al., Salmon et al. 2005, NHTSA 

2015). Although driver behavior has contributed significantly to crashes, it is the least 
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understood factor attributed to crash causation. This is mainly due to limited information 

about driver behavior in our traditional crash data. 

The Strategic Highway Research Program 2 Naturalistic Driving Study (SHRP 2 

NDS) along with the Roadway Information Database (RID) provided a unique opportunity to 

better understand the role of driver behavior in work zone crashes. The speed time series data 

from SHRP 2 NDS can be visualized and analyzed to identify when and where drivers start 

to react to the presence of safety features in work zones. The existence of the speed time 

series data provided an opportunity, but finding an appropriate and well-established statistical 

method to analyze them is a major challenge. 

4.1.2 Background on SHRP 2 Naturalistic Driving Study 

The SHRP 2 NDS is the largest and most comprehensive driving-based research 

study ever conducted. NDS is designed to observe driver’s daily driving behavior in a natural 

setting environment with no experimental control. The Virginia Tech Transportation Institute 

(VTTI) led this project implementation and coordination. More than 3000 female and male 

drivers aged 16 to 98 were recruited in six unique and geographically distributed sites (New 

York, Florida, Washington, North Carolina, Indiana, and Pennsylvania). The participants’ 

vehicles were equipped with the Data Acquisition System (DAS), consisting of sensors, 

cameras, a Geographic Positioning System (GPS), a vehicle network, a lane tracking system, 

accelerometers, an eye-tracking system, and data storage. The DAS sensors collected data 

such as speed, GPS, and acceleration while the four cameras collected forward, rear, driver 

face, and over the shoulder videos. Over 3,100 drivers made over 5 million trips over the 

two-year study period resulted in more than 30 million data miles and 4 million gigabytes of 

data. The NDS collected a variety of variables regarding drivers’ daily driving behavior 
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without any experimental control. Most of the variables were collected at high frequency (10 

HZ), which is every 0.1 second (6). 

4.1.3 Background on SHRP 2 Roadway Information Database 

The Roadway Information Database (RID) was conducted to collect roadway 

information data for the roads driven by drivers in the SHRP 2 NDS. The Center for 

Transportation Research and Education (CTRE) at Iowa State University led the 

implementation and coordination of the project, which used mobile data collection vans to 

collect about 12,500 center line miles of roadway data elements in the six NDS sites. In 

addition, other existing roadway data from government, public and private sources, as well as 

supplemental data, were utilized to populate a roadway element dataset linkable to NDS trips 

to support a comprehensive safety assessment of driver behavior. The identified roadway 

data elements included information on roadway alignment, number of lanes, lane type and 

width, intersection types and location, lighting, signage, median type, barriers, rumble strips, 

and other features. The RID integrated 511 data provided by the states with roadway data 

collected throughout the NDS study locations. The integrated 511 data was the primary 

source of identifying work zone locations and duration (7). 

The advancement of data collection technologies permitted dense observations over 

time and space. The densely collected data, such as speed time series data from SHRP 2 NDS 

collected at 10 HZ (every 0.1 second), reflect the influence of smooth functions as the 

underlying process generating observations. The collection of individual speed profiles 

creates a large volume of data require use of appropriate methods. The classical multivariate 

statistical methods can be used to analyze speed time series data. The classical methods 

cannot utilize the additional information provided by smoothness of underlying functions. 
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The functional analysis methods can take advantage of the additional information existing in 

the functions and their derivatives, which cannot be utilized by traditional statistical analysis. 

As Levitin et al. stated, “New types of data require new tools for analysis” (4). 

4.1.4 Background on Functional Data Analysis (FDA) 

Collected data with high sampling rates creates high-dimensional vectors so the classical 

statistical approaches become inadequate methods of analysis due to the functional nature of 

the data and the significant correlation between close observations. Functional Data Analysis 

(FDA) is a statistical field, which has mainly evolved over the last two decades that appears 

in several research disciplines such as economics, medical fields, psychology, mereology, 

and others. The overview of FDA can be found mainly in the reference books of Ramsay et 

al. (2002, 2005), and other sources (4-8). The FDA tools can be utilized to understand the 

variations in the underlying process over a group of repeated observations. It can be used to 

better analyze and model high dimensional and complex time series data collected at a high 

frequency (Ramsay et al., 2005). 

The FDA is the analysis of information on functions or curves, and is a collection of 

statistical methods to answer questions such as: 

 How the speed functions are different from one driver trace to another trace in a 

work zone? 

 What are the main elements of variations of the speed functions from one trace to 

another? 

It can be concluded that FDA is definitely a suitable method for analyzing speed time series 

profiles in work zones as part of SHRP 2 NDS collected at high frequency 10 HZ (every 0.1 

second). Due to the complex process of driver behavior, the traditional multivariate statistical 
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methods are not capable of extracting the crucial information supplied by the smoothness of 

underlying functions.  

4.2 Literature Review 

Limited research has been conducted to develop models on the effectiveness of safety 

features in work zones. Work zones create change in traffic patterns requiring speed 

reductions. The proper usage and placement of safety features and traffic control devices are 

an important part of every work zone management plan where the safety of construction 

workers, as well as the traveling public, is the major concern for safety professionals. The 

National Highway Transportation Safety Administration (NHTSA) identified speeding as the 

major contributing factor in 30 percent of fatalities (8). The FHWA crash facts also indicated 

speeding as a contributing factor to 28% of work zone crashes in 2014 (9), thus speeding is 

clearly a major contributing factor (10, 11). This has raised awareness of the negative effects 

of speeding in work zones, which has increased the emphasis placed on reducing speed and 

enforcing compliance with work zone speed limits. In order to determine the impact of safety 

measures on attracting drivers’ attention and reducing vehicle speed, a literature review has 

been conducted to summarize the major findings associated with speed management in work 

zones.  

Past research reveals that the use of signs to reduce the speed of traffic through work 

zones has different ranges of effectiveness. It can depend on factors such as geometry, sight 

distance, and the posted speed limit in a work zone location (12). The effectiveness of speed 

reduction signs also varies, but can mainly be attributed to driver behavior, which has not 

been truly investigated. 
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Research in identifying the effectiveness of traffic control devices in work zones 

indicates the most effective measures in reducing mean speed and speed variance are speed 

display signs, flaggers, and automated radar detections with citations issued to vehicle 

owners who exceed the limit. On the other hand, pavement markings, signs, and other 

standard traffic control devices were found to be ineffective in reducing vehicle speed in 

work zones (13-17).  

Studies on the effectiveness of Changeable Message Signs (CMS) in reducing speeds 

and informing traffic about upcoming work zones indicate they are more effective than 

traditional work zone warning signs (18, 19). A study by Zech and Mohan (2008) measured 

the effect of three commonly used CMS in reducing vehicle speeds in work zones. The study 

recorded the speed of 180,000 vehicles on Interstate 90 and found the “WORK ZONE/ MAX 

SPEED 45 MPH/ BE PREPARED TO STOP” message was effective in reducing the vehicle 

speeds between 3.3 and 6.7 mph, concluding a properly selected CMS message can 

significantly reduce traffic speeds in work zones (20). 

Li and Bai (2011) used a CMS at 250, 750, and 1,250 feet from a work zone 

displaying “WORK ZONE AHEAD SLOW DOWN,” and discovered that a CMS will be 

more effective in reducing vehicle speed if placed between 556 to 575 feet from the work 

zone. Alternative messages on CMS, such as “YOUR SPEED IS ## MPH” changing to 

“SLOW DOWN,” followed by “MIMIMUM FINE $200,” had positive effects on persuading 

drivers to reduce their speed. The results indicate the percentage of drivers who were driving 

5, 10, 15, 20, and 25 miles over the speed limit were reduced by 20, 20, 10, 3, and 0.3 

percent, respectively (21). 
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Dynamic speed signs, which can be trailer mounted or mounted on a permanent 

locations such as a light pole, can use laser detectors to measure speed and then display that 

speed to the approaching vehicles. Studies have determined that the use of dynamic speed 

signs in work zones can reduce a vehicle’s speed by as much as 5 mph (22, 23). Several other 

studies indicated speed reductions ranged between 1 and 8 mph upstream of the taper area 

had greater effectiveness within the work area, reducing speed from 3 to 6 mph (19, 24-27). 

The Petsi and McCoy’s study results revealed a positive impact on the average speed 

reduction for the first week, but the sign effectiveness was reduced during the second week 

(28). 

The presence of a speed photo enforcement van in a work zone that had the same 

function as the red light cameras, was successful in lowering vehicle speeds from 6.4 to 8.4 

mph. In a different study, it was effective in reducing the speed by as much as 7.9 and 6.6 

mph for cars and heavy vehicles, respectively (29).  

The implementation of a speed trailer along the side of an urban road, which flashes 

the speed if the vehicle is traveling over the speed limit, was effective in reducing speeds by 

up to 2 mph (29).  

The vast majority of the past research looked at the effectiveness of a single safety 

feature in a work zone. Hildebrand and Mason (2014) evaluated the effectiveness of safety 

measures in three different rural work zones with a semi-controlled environment in Canada. 

Speed data were collected at three spots, including 500 meter upstream, 75 meter upstream, 

and immediately adjacent to an activity area to approximate the speed profile of approaching 

vehicles. The safety measures identified and tested were Floating Speed Zones (FSZ), a 

Traffic Control Person (TCP), Narrow Lanes, a Radar Speed Display Board (RSDB), a 
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Variable Message Sign (VMS), and a Fake Police Vehicle. These traffic control measures 

were singularly and collectively evaluated to identify the most effective measure(s) in 

slowing traffic through the identified work zones. The study concluded that a combination of 

a TCP and an FSZ had the greatest effect in speed reduction by 23 km/h. A Fake Police 

Vehicle and an FSZ as well as a combination of an RSDB and an FSZ both slowed traffic by 

an average of 19 km/h (34).  

A number of research studies were conducted to evaluate speed management 

strategies and effectiveness in highway work zones. Many of the past studies were conducted 

in a controlled environment and have produced mixed results in identifying safety features’ 

effectiveness. The majority of previous research collected vehicle speeds using roadside 

radar guns and road tubes at a limited number of locations, then approximated speed profiles 

based on a few observations. A series of countermeasures have been used to attract drivers’ 

attention to comply with work zone conditions and reduce their speed. However, there is 

limited information about which safety features are the most effective. Past research 

indicated the effectiveness of the speed reduction measures can sometimes vary considerably 

for unknown reasons which can be mainly attributed to driver behaviors that have not been 

truly investigated. The NDS developed and collected by the SHRP 2 provides a unique 

opportunity to observe actual driver behaviors and understand how they react to a series of 

safety measures intended to get their attention in work zones.  In addition, using speed time 

series traces from the NDS, enabled us to determine the speed of the vehicle at any specified 

location upstream of the safety features and subsequently calculate the change in mean speed 

in reaction to any individual safety features in work zones. 



www.manaraa.com

184 

 

 

4.3 Data Descriptions 

Data for this chapter were acquired mainly from the SHRP 2 NDS and the SHRP 2 

RID. The NDS collected time series data utilizing the DAS and video data collected by four 

cameras (6). This study uses vehicle speed time series data attributed to work zones. As 

speeding has been identified as one of the major contributing factors to work zone crashes, it 

is very important to observe and understand how drivers react to multiple safety measures 

applied in work zones to get their attention and reduce their speed.  

The data used in this study went through a quality assurance process. Since most of 

the data were collected from sensors in real world driving environments, missing data were 

observed as one of the main issues. In order to control and ensure data quality in the analysis, 

the percentage of missing data were summarized for each identified speed trace in a work 

zone. The trace with more than 25% of the missing network speed data were removed from 

the dataset. Speed traces with missing values were interpolated assuming a constant increase 

or decrease.  

4.3.1 Data Collection and Data Reduction 

The major effort on the data collection part of this research was identifying work zone 

locations within SHRP 2 data. The RID contains 511 data for most states involved in NDS 

for the duration of this study (October 2010 to November 2013). The 511 data and collected 

variables were very different among the states. A major field in 511 data which contains 

information about the potential work zones was the traffic event description. This field was 

queried for potential work zones by using key words such as “road work”, “lane closure”, 

“construction”, “maintenance”, “cross over”, or “head-to-head”. There were about two 
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million records that needed to be searched for potential work zones. The RID did not have 

511 data for the state of Indiana, so that state was not included in the analysis.  

The 511 data also contain information on the beginning and end of traffic events. 

Based on that, the duration of events which were work zones in our case was calculated. The 

work zones with durations of less than three days were removed due to the low possibility of 

having sufficient number of NDS time series traces for the short term work zones. As a 

result, 9,290 potential work zones were identified. The identified work zones were overlaid 

on NDS trip density data and mapped to the corresponding roadway link ID in the RID. The 

identified locations for 9,290 potential work zones were sent to VTTI to acquire the number 

of NDS time series traces, unique drivers, and driver demographic data associated with the 

links of interest that occurred within the duration of the work zones. 

VTTI provided a list of potential trips associated with the links of interest along with 

driver information on those trips. The data were examined and work zones with at least 15 

potential trips were selected, resulting in 1,680 potential work zones. The next step was 

requesting time series data associated with identified potential work zones. The estimation of 

the physical extent of each potential work zone was needed to increase the likelihood that the 

actual work zone was included. For this purpose, the identified roadway links were mapped 

to RID and the corresponding links were extracted. The dynamic segmentation function in 

ArcMap was utilized to add links to the upstream and downstream of each identified work 

zones.  

The next step on this extensive data reduction effort was to submit a list of identified 

link IDs to acquire a sample time series trace and corresponding forward video for each 

potential work zone. About 3,000 traces were received and the forward video was reviewed 
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to determine if a work zone was actually present. Data collected from forward videos are 

shown in Table 4.1. 

Table 4.1 Extracted work zone characteristics from forward videos 

Presence of work zone (yes or no) Locations of channelization 

Lane closure Right or left Type of channelization 

Number of lanes closed 
Spatial locations of work zone start and end 

points 

Shoulder closures Right, left, or both Presence and locations of workers 

Dynamic message sign Presence and locations of equipment 

Types and locations of barriers (e.g., 

barrels) 
Lane shift 

Work zone speed limit Active work zone 

 

A set of criteria used to identify an active work zone included lane closure, shoulder 

closure, worker present, and equipment present. In some locations, where barrels were 

present along the side of roadway, the work zone was considered inactive and thus excluded. 

At this stage two main criteria to request the final set of time series data was set and 

confirmed. The forward videos were used to identify the true beginning and end points of 

each work zone and confirm if the work zone was actually active. A set of 118 coded active 

work zones including various work zone configurations (such as lane closure and shoulder 

closure, etc.) and types (such as multi-lane divided and 4-lane divided, etc.) were requested. 

Approximately 4,800 time series traces with associated forward/rear video images were 

received from VTTI. At this stage traces with more than 25% of the missing network speed 

data were removed from the dataset. Speed traces with missing values were interpolated 

assuming a constant increase or decrease. All congested traces were removed and only traces 
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with free flow conditions were kept in the analysis. In addition, traces with very poor quality 

images were excluded due to the inability to identify vehicle’s position or confirm if indeed it 

was an active work zone.  

The final step of the process was to identify work zone features such as work zone 

signage, the start of the work zone, the start of the taper, and the start of the work area. The 

location of features identified in the forward video were spatially located by noting the 

nearest video time stamp. The time stamp was then matched with the one in the time series 

data utilizing interpolation. The location of features relative to the start of the taper, which 

was identified as zero, was calculated using the speed of the vehicle. In addition, the position 

of the vehicle relative to each safety feature was calculated using the same technique.   

4.3.2 Identification of Work Zones of Interest 

This study focuses on the analysis of vehicle speeds data in work zones. The 

objective of the study was to analyze various work zone characteristics such as left lane 

closed, right turn closed, and lane shift. It was also desired to analyze different type of safety 

features such as lane closed sign, DMS, DSFS, work zone speed limit signs and so on. A 

total of five work zones with different characteristics has been selected for the analysis in this 

study. The characteristics of the five selected work zones are shown in Table 4.2. There are 

three four-lane divided work zones with left lane closures, but they have different types of 

safety measures such as a DMS or DSFS. Work zone 1 include a DMS as a safety measure 

introduced right after the first work zone warning sign, while the DMS in the work zone 

number 2 is located after the merge sign.  
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Table 4.2 List of work zone characteristics for sample work zones 

 

Work zone 3 contains a DSFS located at 2,200 feet upstream of the taper. Work zone 

number 4 has a right lane closure configuration on a 4-lane divided highway and contains 

DSFS as a safety measure to get drivers’ attention to reduce their speed. Work zone 5 is a 

lane shift situation which does not include any ITS device as a safety measure. 

The video of each trace was observed to locate the start and end of the work zone, the 

start of the taper, the start of the work area, and all individual safety measures. This was 

accomplished by spatially locating the features of interest in the video and matching the time 

stamp in the video with that of the time series data by interpolation. Then, the location of 

features relative to the start of the taper, which was identified as zero, was calculated using 

the speed of the vehicle. A list of coded features in work zones is shown in Table 4.3. 

Overall Female Male
Inside

 Lane

Outside 

Lane

1

Left lane closed 

4-lane divided 

DMS after 1st WZ warning sign

65 55
62

(35)

33

(17)

29

(18)

36

(23)

26

(21)

2

Left lane closed 

4-lane divided 

DMS after lane closed sign

65 55
42

(17)

29

(9)

13

(8)

26

(14)

16

(8)

3

Left lane closed 

4-lane divided 

DSFS after 1st WZ warning sign

55 45
76

(30)

27

(15)

49

(15)

39

(20)

37

(19)

5

Right lane closed 

4-lane divided 

DSFS  after 1st WZ warning 

sign

55 45
68

(29)

24

(15)

44

(15)

53

(27)

15

(9)

9
Lane shift

4-lane divided 
55 55

37

(20)

19

(9)

18

(11)

16

(12)

21

(10)

Work

 Zone 

Work Zone 

Characteristics

Roadway 

Speed 

Limit 

(mph)

Work 

Zone 

Speed 

Limit 

(mph)

Number of speed profiles

(Number of Unique Drivers)



www.manaraa.com

189 

 

 

Table 4.3 Work zone features extracted from forward videos 

Coded Features in Work Zones 

Work Zone 1st Warning Sign Work Zone Speed Limit Sign 

Work Zone Advisory Sign Presence of Barrels 

Work Zone 2nd Warning Sign Presence of Jersey Concrete Barrier 

Work Zone 3rd Warning Sign Presence of Cones 

Work Zone 4th Warning Sign Merge Sign 

DMS Lane Closed Sign 

DSFS Start of the Taper 

Flashing Arrow Start of the Work Area 

 

4.4 Methodology 

Functional data analysis (FDA) deals with the analysis of the data that are in the form 

of functions. The speed time series data from SHRP 2 NDS were collected at a high 

frequency and are the source of data for this research. Although the collected data are 

function like data with high dimensions, they are in a discrete format that needed to be 

converted to a functional format. In this section an overview of the FDA process along with 

the mathematical properties supporting each step of the process is discussed. The actual 

example of each process is demonstrated to help the reader have a better understanding of the 

process. 

4.4.1 Applying Functional Data Analysis to Discrete Raw Data 

The speed time series data from SHRP 2 NDS comes as a discrete dataset, which 

contains 𝑦1 ,…. 𝑦𝑛  observations. The function 𝑓(𝑡) is the representation of the continuous 

underlying process. The 𝑓(𝑡𝑖) is the notation for the underlying process at time 𝑡𝑗 and the 

symbol 𝑦𝑗 representing a corresponding noisy observation, where j = 1,….𝑛. The continuous 
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function therefore contains n pairs of (𝑦𝑗 , 𝑡𝑖). Therefore these data can be used to estimate 

characteristics of function 𝑓(𝑡) at unobserved time points (4-6). The speed time series of a 

single trace with fitted curves to the discrete observations are shown in Figure 4.1. The plot 

represents a single speed time series raw data collected over work zone one and zoomed to a 

portion of the trace for a better illustration. There were 240 observations over 24 seconds, 

which are denoted by black points.   

 

Figure 4.1 Single speed time series trace of discrete raw data converted into a functional 

curve at 3, 2, and 1 second interval from top to bottom panel, respectively 
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The discrete observations were fitted with a functional object demonstrated as a red 

line in 3 examples. The conversion was done at different frequencies from lower (every 3 

seconds) to higher (every 1 second) and from top to bottom plots of fitted functions in Figure 

4.1. The more frequent conversion obviously is more comparable to observed data points but 

it takes an enormous run time to complete the conversion for large datasets. The discrete data 

was converted to functional data in every 2 seconds in this research.  

The conversions of discrete data to functional data have already corrected some of the 

noises that comes from non-continuous observations of field data. Even with a high collected 

frequency, the data points are not continuous.  

Now, discrete observations can be related to the underlying smooth process through 

the Equation 4.1. 

                                                               𝑦𝑖 = 𝑓  (𝑡𝑖) +  Ɛ𝑖                                                    (4.1) 

Where (𝑦𝑖 , 𝑡𝑖)  are observed raw data, each Ɛ𝑖  is uncorrelated error with mean of zero and 

variance of 𝜎2, and i = 1,….,𝑛. 

4.4.2 Developing Smooth Curves by Basis Expansion 

In the previous section the discrete raw observations were converted into functional 

entities by fitting a curve to the raw discrete data to estimate the underlying process. The next 

step in this process is representing the discrete data as a smooth function by using a basis 

expansion. The basis expansion is used to represent a function as a combination of 

elementary functional building blocks as shown in Equation 4.2. 

                                                      𝑓(𝑡) = ∑ 𝐶𝑘ф𝑘(𝑡) 
𝑘

𝑘=1
                                                  (4.2) 
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Where K represent the number of ф𝑘 basis functions, 𝐶𝑘 are the basis coefficients which 

determine the relative weight of each basis function in constructing the function 𝑓(𝑡).  

 The basis expansion advantage is to represent the functions of a potentially infinite-

dimensional world within a finite dimensional framework. In ideal situation, basis functions 

may contain features that match the known functions being estimated. This helps to reach a 

reasonable estimation by using a relatively small number of k basis functions. 

 The basis function ф𝑘 can be expressed in many different types of basis function 

systems such as the power of x for polynomial functions, Fourier basis for periodic function, 

and spline basis for non-periodic functions. For the situation of non-periodic curves with 

complex functions the low order polynomial is unable to capture all the features. The B-

spline functions are the most commonly used for such situations and will be used in this 

study.  

4.4.3 Smoothing Process by B-splines 

The B-splines are basically polynomials joined end to end at knots, which are a set of 

interval boundaries. The knots are often chosen to divide the desired time domain into 

equally spaced intervals. The knots may also be chosen at any specified time point of 

interest. The polynomials are smoothly connected at the knots. The B-spline are categorized 

by their order which is one larger than the polynomials degree they are constructed from. The 

spline with an order of three is usually used to confirm that first and second derivatives are 

smoothly connected at the knots. The basis coefficients weights are selected to make sure the 

developed curve optimally fitted the data. The smoothness is controlled by the number of 

basis functions selected. The larger number of basis functions caused the curve to be fitted to 

the raw data points more accurately. Although the large number of basis functions create a 
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representative of the raw discrete data, it may cause over-smoothing issues. The scree plot 

was used to select the optimal number of basis functions needed to produce a smooth curve 

as illustrated in Figure 4.2. 

 

Figure 4.2 Scree plot for selecting the optimal number of basis functions 

The scree plot result showed 17 as the optimal number of basis functions to construct 

a proper smooth curve for the data. The structure of splines basis functions is shown in 

Figure 4.3.  

 

Figure 4.3 The length of 2.3 mile work zone is illustrated by 17 spline basis functions 

and 13 interior knots with order four polynomials 

There are 17 spline functions fitted to a speed trace in work zone one over a 2.3 miles 

stretch of work zone from 1.3 miles upstream of the start of the taper (point zero) to one mile 
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after the taper point. There is a spline as a polynomial with a specified order over each 

interval. The rule is defined by Ramsay et al., 2015, as “The total number of degrees of 

freedom in the fit equals the order of polynomials plus the number of interior breakpoint” 

(6). The smoothing leaves some noise that is not truly part of the process. The over-

smoothing may discard some high frequency behavioral data that reveals important 

information desired to be observed and analyzed in the study. 

4.4.3.1 Spline Smoothing Penalties 

In the smoothing process, there is a trade-off between fitting the raw discrete data and 

creating a smooth curve. The normal practice of fitting data in any model is to minimize the 

sum of squared error between the observed value and the estimated function. The objective 

of fitting B-spline function is the minimization of the least square principle as follow: 

                                                  ∑ (𝑦𝑖 − 𝑓(𝑡𝑖))
2

+  𝜆𝐽(𝑓)
𝑛

𝑖=1
                                            (4.3) 

The sum of squared error (SSE) is described in the first part of Equation 4.3 and the 

term added to the SSE is a penalty term,  𝐽(𝑓), to control for curve smoothness with 

smoothing parameter λ, which is tuning the goodness of fit and the regularity of the function. 

The smoothness of the fitted curve which is shown by 𝐽(𝑓) in the equation 4.3 is a measure 

of curvature of the smoothing function that can also be shown as ∫{𝐷2𝑓(𝑡)}2, known as an 

integrated squared second derivative. Replacing 𝐽(𝑓) in Equation 4.3 with the integrated 

squared second derivative will create the Penalized Sum of Squared Error (PENSSE) shown 

in Equation 4.4. 

                                     PENSSE = ∑ (𝑦𝑖 − 𝑓(𝑡𝑖))
2

+  𝜆 ∫{𝐷2𝑓(𝑡)}2
𝑛

𝑖=1
                          (4.4) 
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The smoothing parameter λ is greater than zero. As the value of λ increases, the larger 

penalty is applied and creates a smoother function. On the other hand, the smaller λ 

constructs a function with higher roughness which is closer to the raw data. 

To overcome the problem of overfitting, a cross validation technique was needed to 

choose the optimal smoothing parameter. The idea is to set part of the data to one side and 

call it a validation sample and fit the model to the remaining data which is a training sample. 

Here the goodness of the fit of the model to data that were not used for model estimation is 

observed. Generalized Cross Validation (GCV) was used to calculate λ as follow (6): 

                                               𝐺𝐶𝑉(𝜆) =  (
𝑛

𝑛−𝑑𝑓(𝜆)
) (

𝑆𝑆𝐸

𝑛−𝑑𝑓(𝜆)
)                                        (4.5) 

The mean squared error measure is discounted twice. The right part of Equation 4.5 is 

an unbiased estimate of error variance 𝜎2, and the left part represent two discounts. A sample 

of functional data for work zone one involved 62 speed traces for raw discrete data, 

converted functions, and smoothed spline functions in Figure 4.4 demonstrates the whole 

process. 

The top panel presents the raw discrete time series data collected at 10 HZ 

frequency.The middle panel shows the converted discrete observations to functional curve 

utilizing Equation 4.1. The bottom panel reveals smooth curves by utilizing the smoothing 

techniques which included basis expansion, fitting optimal number of B-spline functions, and 

applying appropriate penalty to guard against overfitting. 
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Figure 4.4 Process of developing and smoothing functional data 

Raw speed traces (top panel), converted functional curve (middle panel) and smoothed fitted 

spline functions (bottom panel) 

4.4.4 Functional Data Summary Statistics 

As for the classical statistical analysis, summary statistics can be similarly applied to 

the functional data. There are useful functional analysis techniques that can be utilized to do 

the statistical summary such as mean and variance for a group of converted functional data. 
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4.4.4.1 Mean of Functional Data 

One of the most useful statistical summaries of functional data is calculating the mean 

of functional data from a group of functional curves converted from the raw discrete 

observations. The functional data mean is a pointwise average for a group of functional 

observations. It provides an average curve that represents a repeated curves over the same 

locations at different time periods. The sample mean of functional data is expressed as 

follows: 

 
�̅� =

Ʃ𝑓(𝑡𝑖)

𝑛
 

             (4.6) 

A plot of Figure 4.5 illustrates the calculated mean as a thick solid black line for a 

sample of 62 traces in work zones 1. Point zero shows the start of the taper and the other 

distances are relative to the taper location. 

 

Figure 4.5 Plot of smoothed speed profiles in work zone with calculated mean for 62 

traces 

4.4.4.2 Confidence Interval of Functional Data 

The pointwise confidence interval can be derived from the variance-covariance 

matrix which is 𝑉𝑎𝑟{ŷ} =  ф𝐶Ʃ𝐶𝑇ф𝑇 and can be written as Equation 4.7. 
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                                                    ŷ(𝑡) ± 1.96 √𝑉𝑎𝑟{ŷ(𝑡)   
                                                (4.7) 

Figure 4.6 shows a sample plot of confidence interval as thick dotted blue lines for 

the mean speed profile based on Equation 4.7. 

 

Figure 4.6 Plot of smoothed speed profiles in work zone 1 with calculated mean and 

confidence interval 

4.4.4.3 Derivatives of Functional Data 

The rate of change in functional data is very useful to identifying the variations in the 

groups of functional data. The rate of change can be identified by using derivative method of 

functional data analysis. This method provides very useful information and explanations 

about the dynamics of variability. The first derivative of functional data 𝑓(𝑡) can be 

expressed as: 

                                                             𝐿𝑓(𝑡) =  𝐷1𝑓(𝑡)                                                     (4.8) 

The variable used in this study is speed and the first derivative of speed is 

acceleration, which provides useful information about drivers’ behavior and reveals if they 

reacted to the safety measure and reduced their speed.  
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Figure 4.7 A plot of a speed profile (top panel) along with its first derivative (bottom 

panel) 

4.4.4.4 Functional Boxplot for Functional Data 

Functional boxplot is an informative exploratory tool for visualizing functional data. 

Visualizing data reveals informative features about functional data. The functional boxplot 

illustrates five important descriptive statistics, including the first and third quartile, the 

median, non-outlying minimum and maximum observations. Additionally, the boxplot can 

display any outlier function in the data. The boxplot was first introduced by Tukey, 1970, and 

evolved into an informative method in data visualization and interpretation (10).  
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The classical boxplot actually illustrates the middle 50% of data and this can be 

extended to functional data by the introduction of the central region concept by Liu et al., 

1999. The band enclosed by α proportion (0 < α < 1) of deepest curves of the sample used to 

estimate the 50% central region and expressed as: 

                  𝐶0.5 = {(𝑡, 𝑦(𝑡)): min
𝑟=1,…,[

𝑛

2
]
𝑦𝑟(𝑡)  ≤ 𝑦 (𝑡)  ≤ max

r=1,…,[
n

2
]
  𝑦𝑟(𝑡)}                           (4.9) 

Where [n/2] is the smallest integer that is not less than n/2 (35).  

A sample data from work zone one was used to construct the functional boxplot 

which is represented in Figure 4.6. The 50% central region in magenta color is represented 

by a surrounding border defined as an envelope in the boxplot. Since the 50% central region 

is not affected by extreme values and outliers, it provides a less biased and solid range of data 

for interpretation and analysis of the behavior among a group of repeated time series data.  

 

Figure 4.8 Functional boxplot of speed profiles in work zone one 

The black curve in the box represents the median which is an important statistics to 

measure centrality. The blue lines which act as fences to the box are obtained by inflating the 
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50% central region envelope by 1.5 times the range of the 50% region. The outliers which 

were placed outside the constructed fences are shown by dashed red-lines.  

The methodologies for a functional data analysis process and methods, along with 

graphical examples, were used to define the relatively complicated process of functional data 

analysis. The applications of all the tools discussed here are examined in the analysis of the 

results. 

4.4.5 Legibility Distance 

The legibility of a sign is determined by its font size, color, height, and reflectivity. 

Detecting and reading a sign involves a complex physical and mental process. This process is 

also affected by other roadway, traffic, and environmental factors.  The legibility distance of 

a sign can be identified by a legibility index which represents the distance in feet that a sign 

may be read for every inch of a capital letter height. If the sign has the legibility index of 30, 

the sign is readable at a distance of 240 feet if the capital letter height is 8 inches (37). 

In this study, the effectiveness of safety features is determined by measuring the 

change in a mean speed from a legible distance to the feature location. Some assumptions 

were made to select the legibility distance for different types of safety measures applied in 

the study’s work zones. The types of traffic controls used in 5 work zones of this study 

include static work zone warning signs, DMS, DSFS, work zone speed limit signs, flashing 

arrow signs, and lane merge signs.  

4.4.5.1 Static Signs 

The assumption for astatic work zone warning sign is based on a 6 inch capital letter 

height and the legibility index of 30 which provides a legibility distance of 180 feet. 
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4.4.5.2 Dynamic Message Signs (DMS) 

The assumption made for DMS legibility is based on current MUTCD guidelines 

recommending a legibility distance of 650 feet based on the character height of 18 inches, 

however, due to another recommendation of MUTCD for the distance of 600 feet at night 

and 800 feet for normal daytime conditions, the legibility distance of 600 feet was selected 

for the purpose of this study (38). 

4.4.5.3 Work Zone Speed Limit Signs and Dynamic Speed Feedback Signs (DSFS) 

The assumptions made for a speed limit sign and a DSFS are a 36 by 36 inch sign 

plaque with a 15 inch letter height. The legibility distance based on a legibility index of 30 is 

450 feet. Although there might be situations with a larger letter size, the legibility distance 

for these types was selected as 450 feet for consistency. 

4.4.5.4 Flashing Arrow Signs 

The distance for the flashing arrows was selected based on the DMS assumption to be 

600 feet. 

4.4.5.5 Merge Signs 

The assumptions for the merge signs are based on two studies by Paniati (1988) and 

Zwahlen et al. (39-40), providing legibility distances which are different from each other. To 

be on the safe side we assumed the shorter distance of the two studies which is 270 feet. 

4.4.5.6 Other Safety Features 

There are occasions in the work zone when the safety feature does not include any of 

the specified types mentioned earlier, such as the start of the taper or the work area, so 

assumptions are based on visibility. The reaction distance in such cases was selected based 
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on the locations identified as the point where the majority of drivers started to react to the 

specified safety feature. 

4.5 Functional Data Analysis Results 

The functional data analysis tools were utilized to study driver behavior in various 

work zone configurations with a unique set of safety treatments applied to each. In this study 

the methods of functional data analysis were utilized to interpret and analyze driver behavior 

when encountering safety features in various work zone configurations. The methods will be 

used to identify the effectiveness of various safety features in different setups applied in work 

zones.  

There are 5 work zone in this study, 3 with left lane closures and different safety 

measure layouts, one with a right lane closure, and one with a lane shift configuration. 

Details of work zones characteristics are provided in Table 4.2.  

In this study the location of the work zone Temporary Traffic Control Devices 

(TTCD) were confirmed according to the Manual of Uniform Traffic Control Devices 

(MUTCD) guidelines, providing guidance on the use and implementation of the TTCD. The 

implementation of the TTCD usually follows the agency guidelines for road safety, 

considering factors such as traffic conditions, traffic volume, site conditions, and cost 

effectiveness of the safety devices. The selection of the TTCD depends on the nature of the 

road work. There are many different applications of work zones which are demonstrated in 

Part 6 of MUTCD (40).  

Figure 4.9 shows a typical application of a suggested type and placement of a TTCD 

in a work zone. There are four signs associated with the stationary lane closure in the 

schematic, including the first warning sign, second warning sign, a lane closed sign, and a 
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flashing arrow. The placement locations are identified and the dimensions are shown as A, B, 

and C.  

 

Figure 4.9 Typical TTCD application for a stationary lane closure arrangement on a 

divided highway (FHWA 2009) 

These dimensions can be calculated using the information in Table 4.4 which are 

defining the letter codes for the application of the TTCD diagram. Dimension A is the 

distance from the point of restriction to the location of the first sign, which depends on the 

type and speed of the roadway as shown in Table 4.4. The first sign is the closest sign to the 

work area. The letters B and C are dimensions showing the distances between the first and 

second signs and between the second and third signs, respectively. The third sign is the 

furthest sign upstream of the work area. All of the 5 work zones in this study were selected in 

accordance with the suggested locations of the TTCD with distance requirements.  
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Table 4.4 Recommended advanced warning sign minimum spacing (FHWA 2009) 

Roadway Type 
Distance Between Signs  

A B C 

Urban (low speed)    100 ft.    100 ft.    100 ft. 

Urban (high speed)    350 ft.    350 ft.    350 ft. 

Rural    500 ft.    500 ft.    500 ft. 

Expressway / Freeway 1,000 ft. 1,500 ft. 2,640 ft. 

 

The road types of all five work zones is expressway/freeway with a high speed limits. 

Therefore, the suggested distances of the signs was compared with the expressway/freeway 

category of Table 3.4. The distance of the closest sign to the point of a restriction was equal 

to or greater than 1,000 feet, and the distance of the furthest sign upstream of the transition 

point was also greater than 2,640 feet for similar conditions.  

The results of the functional data analyses and major findings for the various work 

zone scenarios are provided in the following sections. The study intended to look at driver 

behaviors for overall, male, female, closed lane, and open lane drivers individually to see if 

there are identifiable differences among the comparable groups. 

4.5.1 Left Lane Closure with a DMS after Work Zone First Warning Sign 

The functional data analysis methods were used to identify the underlying process of 

driver behavior reacting to safety measures and summarized similarities and differences of 62 

traces in work zone one from one-quarter mile upstream of the first work zone warning sign 

(at 0.93 mile upstream of taper), all the way through the work area. The y-axis represents the 

speed in mile per hour (mph) and the x-axis is the distance to the start of taper (point zero). 

The negative distance is upstream of taper point and positive distance is downstream of the 

taper. A series of safety measures applied in work zone one along with their locations are 

shown in Figure 4.10. The roadway speed limit is 65 mph and changes to 55 mph in the work 
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zone. There is only one speed time series trace. The vertical orange dashed-lines represent 

the locations of safety measures throughout the work zone. The first work zone warning sign 

was placed one mile upstream of the work area. This is slightly different than the calculated 

distance from the point zero (start of taper). The start of the taper was selected as the location 

where the transition or the point of restriction starts, as disscussed in MUTCD typical 

diagram. Here the first point of restriction was where the barrels were introduced in the 

shoulder to gradually close the left lane.   

 

Figure 4.10 Work zone one with left lane closure and utilized safety features types and 

locations 

A plot of the distribution of all traces differentiating male and female drivers is shown 

in Figure 4.11. The plot represents 62 traces which differentiate males and female traces. The 

male driver traces are in blue and the female driver traces are in orange. Speed time series 

traces reveal a mixed distribution for both genders throughout the work zone.  

Another way to examine the distribution of the speed profiles in this work zone is by 

observing the open and closed lane traces which are represented in Figure 4.12.  
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Figure 4.11 Speed time series profiles showing male and female drivers in work zone 

one 

The closed and open lane drivers, speed traces are shown in orange and blue, 

respectively. The speed time series data reveals drivers in the closed lane mainly driving at a 

higher speed up to the start of the taper location, compared to open lane drivers. 

 

Figure 4.12 Speed time series traces showing open and closed lane traces in work zone 

one 

The results of the functional data analyses for overall, male, female, closed lane, and 

open lane traces are discussed in the following sections for the five work zones with different 

characteristics and various safety features layouts. The observed discrete raw data were first 

converted to functional data and then the smoothed B-spline function was fitted to each speed 

trace as discussed in section 4.2.1. 
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4.5.1.1 Mean Speed and Confidence Interval of Functional Objects 

The average driver behavior for multiple speed profiles interacting with various 

safety measures in work zones was identified using the smoothed functional data. The mean 

speed is shown as a thick black curve along with blue dashed lines representing a 95% 

confidence interval in the left panel of Figures 4.13, 4.15, 4.17, 4.19, and 4.21 (a) through (e) 

for overall, male, female, open lane, and closed lane traces in work zones 1 through 5, 

respectively. The mean speed for all drivers shows a slight reaction to the presence of the 

first warning sign and the DMS. The reactions to these two signs were higher for female and 

open lane drivers, however, no reaction was observed for male and closed lane drivers at 

these two signs.  

The first major reaction to the presence of a work zone started at about 1,800 feet 

upstream of the taper to the presence of the lane merge sign, speed limit sign, and the start of 

the taper for the overall model. The first reaction point for female and male drivers was at 

about 1,900 and 1,700 feet, respectively. The closed lane drivers’ first major speed reduction 

occured earlier than the other groups at about 2,100 feet, while open lane drivers reacted at 

about 1,750 feet upstream of the taper.  

The biggest reaction was to the work area and the presence of equipment and 

workers. This occurred at about 950 feet upstream of the work area for the overall and male 

drivers, and about 900, 800, and 1,000 feet for female, closed lane, and open lane drivers, 

respectively. 

The speed traces showed an overall high dispersion in this work zone, particularly in 

the vicinity of the work area.  The width of the confidence interval for the overall model was 

8.9 mph at the upstream of the work zone, increasing between the DMS and the second 
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warning sign (9.5 mph), narrowing again past the second warning sign (9 mph), increasing 

again closer to the taper point (9.5 mph), and increasing even further closer to the work area 

(9.8 mph).  

The width of the confidence interval was higher for female and open lane drivers 

compared to male and closed lane drivers. This was more apparent at the upstream all the 

way to the point when they started to react to the presence of the lane closed sign and the 

taper area. The confidence interval upstream of the first warning sign was 9 and 7.5 mph for 

female and male drivers, respectively, however, they both increased at the work area to 11.4 

and 8.9 mph for female and male drivers, respectively. The confidence interval for open and 

closed lane drivers upstream of the first sign was 8.6 and 7.5 mph and increased to 10.5 and 

10.4 mph at the work area, respectively. 

4.5.1.2 Functional Boxplots 

The functional boxplots is a very useful visualization tool to present the middle 50% 

of data limited by the first and third quartiles. It is based on the notion of depth which 

measures the centrality of an observation with respect to the remaining data. The functional 

boxplots for work zone 1 through 5 are shown in the right panel of Figures 4.13, 4.15, 4.17, 

4.19, and 4.21 for the respective driving group to the left.  Since the 50% central region is not 

affected by extreme values and outliers, it provides a less biased and solid range of data for 

interpretation and analysis of the behavior among a group of repeated time series 

observations. The plots show valuable information regarding driver behavior throughout the 

work zone interacting to a set of safety features.  

The boxplot for the overall model shows the upstream speeds’ tendency was toward 

the third quartile and above the median and continued to be the same up to the point of the  
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Figure 4.13 Plots of mean speed, confidence interval, and functional boxplot in work 

zone one 

Left panel. Plot of mean speed and confidence interval for speed time series traces for overall 

traces (a), male drivers (b), female drivers (c), closed lane traces (d), and open lane traces (e) 

Right panel. Plots of functional boxplots for the corresponding categories to the left 

(b) 

(c) 

(d) 

(e) 

(a) 
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first major reaction to the work zone at 1,850 feet upstream of the taper. However, there was 

a different trend for the first quartile limit. The trend was moving lower in reaction to the first 

two signs and then was moving higher from 0.6 mile upstream of the taper until the point of 

reaction to the lane closure and taper area. Then, the speeds were scattered equally above and 

below the median with a slight tendency toward the lower range for the remaining of the 

work zone.  

The female drivers’ speed traces revealed higher fluctuations compared to the male 

drivers. The speed for male drivers has a narrower 50% middle depth and was mainly below 

the median and toward the first quartile limit. The female drivers speed present a wider 50% 

depth, particularly after their first major reaction to the presence of the work zone and in the 

vicinity of the work area. The closed lane drivers’ speed profiles also present a narrower 50% 

middle depth compared to open lane drivers from the upstream all the way to the point of 

their first major reaction. The models for both male and female drivers show the existence of 

one outlier in the speed profiles of these groups. 

4.5.1.3 Vehicle Acceleration Profiles 

The rate of change can be used to see how drivers reacted and reduced their speed to 

different safety features utilized in work zones to slow the traffic down. The deceleration rate 

can be used to see if male and female drivers reacted differently to the presence of work 

zones with various configurations. The deceleration rate for overall, male, female, open lane, 

and closed lane drivers in five work zones with different characteristics and various safety 

features were calculated using first derivative of speed. The rates of change for drivers 

reacted to the safety features in work zone one are shown in Figure 4.14. 
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Figure 4.14 Vehicle acceleration in work zone one with left lane closure and a DMS 

after the first warning sign 
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The first derivative for vehicle speed was calculated using derivatives of functional 

data methods discussed earlier. The y-axis shows the acceleration which is miles per hour per 

second. The rate was calculated for each observation (every 0.1 second) and averaged for 

each second. The acceleration then was plotted against the distance from the start of the taper 

which is shown as an orange dashed line. The negative values indicate upstream and positive 

values are for the downstream of the taper. 

There was a minimal deceleration for overall traces in reaction to the first two safety 

features at 0.93 and 0.8 miles upstream of the taper. The majority of vehicles started to 

decelerate from the location of second warning sign at about 0.4 mile upstream of the taper 

and reached the maximum deceleration at the work area. The deceleration turned into a slight 

acceleration in between the first and second warning sign, and also when vehicle moved to 

the other direction of the roadway for a head-to-head traffic. There were few drivers who 

demonstrated different deceleration behaviors which can be seen as outliers on the plots. 

The deceleration rate was however different between comparable categories. The 

male and open lane drivers had a lower reaction to the first three signs and their deceleration 

rate was lower than the female and open lane drivers in reaction to the merge sign and the 

taper area safety features. There were couple of outliers in each category. 

4.5.1.4 Effectiveness of Safety Measures 

Drivers reacted to the presence of a series of safety features as they approached and 

travelled through the work zone one. Changes in the mean and the associated variations for 

speed profiles are shown in Table 4.5. The change in mean speed was calculated from a 

legible distance upstream of each feature. The legibility distances were selected according to 

the type and the recommended distance for the desired feature discussed in the methodology.



www.manaraa.com

214 

 

 

2
1
4
 

Table 4.5 Change in mean speed and standard deviation reacting to work zone one safety features 
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Safety 

Measure

Mean 67.46 66.46 -0.09** 66.29 -0.44* 65.77 -0.01 63.76 -0.89*** 62.4 -0.8*** 61.9 -0.73*** 61.6 -1.01*** 57.71 -3.52***

SD 4.51 4.69 -0.08 4.58 -0.05 4.84 -0.17 4.62 0.2 4.86 -0.32 4.71 -0.34 4.54 -0.25 4.96 0.33

Up. CI 76.3 75.66 -0.28 75.28 -0.56 75.27 -0.37 72.83 -0.52 71.93 -1.43 71.13 -1.39 70.5 -1.5 67.44 -2.89

Lo. CI 58.6 57.26 0.03 57.31 -0.34 56.27 0.34 54.7 -1.28 52.88 -0.18 52.67 -0.07 52.7 -0.52 47.99 -4.17

Mean 69.13 68.36 -0.06* 68.27 -0.27 67.79 -0.06 65.58 -0.91*** 64.14 -1.17*** 63.45 -1.22*** 62.97 -1.53*** 58.55 -3.31***

SD 3.8 3.94 -0.13 3.76 0.01 3.6 -0.28 3.63 0.55 4.44 0.09 4.57 -0.19 4.53 -0.39 4.17 0.37

Up. CI 76.58 76.08 -0.32 75.64 -0.25 74.85 -0.63 72.69 0.16 72.84 -1 72.4 -1.58 71.84 -2.29 66.74 -2.59

Lo. CI 61.68 60.64 0.18 60.9 -0.28 60.73 0.49 58.46 -1.98 55.44 -1.35 54.5 -0.86 54.09 -0.76 50.37 -4.04

Mean 65.98 64.78 -0.16** 64.56 -0.61*** 63.99 0.04 62.17 -0.89*** 60.87 -0.47 60.52 -0.28 60.4 -0.56 56.98 -3.72***

SD 4.62 4.72 -0.1 4.59 -0.26 5.14 -0.11 4.86 -0.01 4.76 -0.49 4.46 -0.25 4.27 0.08 5.52 0.26

Up. CI 75.05 74.04 -0.36 73.55 -1.11 74.07 -0.19 71.7 -0.92 70.2 -1.43 69.28 0.78 68.76 -0.4 67.8 -3.2

Lo. CI 56.92 55.54 0.02 55.56 -0.1 53.92 0.25 52.64 -0.86 51.54 0.49 51.77 0.21 52.04 -0.71 46.16 -4.24

Mean 69.62 68.35 -0.13* 68.19 -0.33 67.95 -0.06 65.17 -1.07*** 63.58 -0.83** 63.05 -0.74 62.75 -1.12** 58.45 -4.12***

SD 3.83 3.85 -0.18 3.61 -0.03 3.33 -0.17 3.54 0.33 4 -0.43 3.85 -0.76 3.57 -0.86 3.58 1.73

Up. CI 77.12 75.9 -0.48 75.26 -0.39 74.48 -0.4 72.11 -0.42 71.42 -1.67 70.6 -2.24 69.75 -2.82 65.48 -0.74

Lo. CI 62.12 60.8 0.23 61.12 -0.27 61.43 0.26 58.24 -1.71 55.75 0.01 55.49 0.77 55.76 0.57 51.42 -7.49

Mean 65.9 65.09 -0.12** 64.93 -0.54*** 64.2 0.02 62.75 -0.78*** 61.55 -0.78** 61.07 -0.72* 60.77 -0.93** 57.18 -3.1***

SD 4.36 4.82 -0.03 4.77 -0.14 5.19 -0.19 5.07 0.2 5.29 -0.28 5.13 -0.15 5.01 0.04 5.74 -0.39

Up. CI 74.45 74.54 -0.19 74.27 -0.81 74.36 -0.34 72.69 -0.39 71.91 -1.31 71.12 -1 70.6 -0.87 68.44 -3.87

Lo. CI 57.34 55.65 -0.06 55.58 -0.26 54.03 0.39 52.8 -1.16 51.19 -0.25 51 -0.42 50.94 -1 45.93 -2.35

SD = Standard Deviation, Up. CI = Upper Comfidence Interval, Lo. CI = Lower Confidence Interval

Significance codes: 0.01%***  0.05%**   0.1%*

Overall 

62 

Traces

Male 

Drivers 

29 

Traces

Female 

Drivers 

33 

Traces

Closed 

lane 26 

Traces

Open 

lane 

36 

Traces

1,850

1,750

1,950

2,100

1,750
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One sample t-test was conducted to test the null hypothesis stating the mean speed at 

the upstream of the sign is equal to that at the sign location, in other words the change in 

mean speed from upstream of the sign to the location of the sign is equal to zero at 95% 

confidence level. The normal quantile plots, along with Shapiro Wilk test, were conducted to 

validate the normality of data distributions to fulfill the assumptions of one sample t-test. It 

should be noted that the large sample sizes used in all work zone ensure accurate p values in 

case of the violation of normality.  

As model results revealed, there was a slight reaction from 180 feet upstream to the 

first warning sign, which was effective for the overall, female and open lane drivers at 5% 

significance level. The mean speed was significantly dropped from 600 feet upstream to the 

DMS for both female and open lane drivers at 1% level. The first major reaction occurred at 

upstream of the lane merge sign and about 1,850 feet upstream of the taper point. The 

reaction started earlier for female and closed lane drivers at 1,950 and 2,100 feet upstream of 

the taper, respectively.  

Lane merge sign, work zone speed limit, start of the taper, flashing arrow, and the 

work area all had significant influence on the overall and male drivers to slow down at 99% 

confidence level. The female drivers had a significant reaction to the lane merge sign from 

270 feet upstream of that at 1% significance level. Similarly, they reacted significantly to the 

work area from 800 feet prior to that at 1% significance level. However, a work zone speed 

limit sign, the start of the taper, and the flashing arrow didn’t have a significant influence on 

female drivers. Closed lane drivers reacted to the lane merge sign, the work zone speed limit, 

the flashing arrow, and the work area at 5% significance level or higher. Open lane drivers, 
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on the other hand, reacted to all safety measures but the second warning sign and the taper 

point at 5% level or higher. 

The standard deviation upstream of the first warning sign was about 20% higher for 

female drivers compared to their male counterparts. It was also higher for the open lane 

compared to closed lane drivers. The first three signs had no major effect on the changing of 

speed variations. The reaction at the lane merge sign caused an increase of up to 14% for 

male, 9% for closed lane, and 4% for open lane drivers. The speed limit sign, the start of the 

taper, and the flashing arrow had a positive impact in reducing the variations for all groups, 

with the exceptions of the speed limit sign for male drivers and the flashing arrow for open 

lane drivers. The work area, on the other hand, increased the speed variations for all groups, 

with the exception of open lane drivers who showed lower variations in the work area. The 

standard deviation for female drivers at work area was about 24% higher, 5.78 compared to 

4.54 mph for male drivers.  

In short, most of the safety features in this work zone significantly influenced drivers’ 

speed behavior after the work zone’s second warning sign. The reactions to the first three 

measures were somehow mixed. Female and open lane drivers had significant reactions to 

the presence of the first warning sign and the DMS, however, male and closed lane drivers 

had no significant reactions to the first three signs. The female drivers’ reaction to the 

presence of the DMS was 35% higher than male drivers, and open lane drivers had over 50% 

higher reaction to the DMS compared to closed lane drivers. There were no reactions to the 

second warning sign. The first three signs had no impact on speed variations, however the 

merge sign caused an increase in speed variability for the vast majority of drivers. The next 

three safety measures helped to reduce the variations before increasing in the work area.  
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4.5.2 Left Lane Closure with a DMS after Lane Merge Sign 

Various tools of functional data analysis were used to identify the underlying process 

of driver interaction with safety features and summarized similarities and differences of 42 

traces in work zone two from 500 feet upstream of the first work zone’s warning sign (at 0.35 

mile upstream of taper) all the way to the work area. The proportion of female drivers in this 

work zone is more than two times higher than male drivers.  The work zone speed limit was 

55 mph, 10 mph below the roadway speed limit. A series of safety measures applied in this 

work zone including a merge sign, a DMS, a work zone speed limit sign, a taper, and a 

flashing arrow at -0.35, -0.27, -0.19, and 0.03 miles from the start of the taper, respectively. 

A DMS was located after the lane merge sign in this work zone. 

4.5.2.1 Mean Speed and Confidence Interval of Functional Objects 

The avrage driver behavior for multiple speed profiles reacting to a series of safety 

features in work zone two was identified using the smoothed functional data. The average 

mean speed upstream of the first sign was about 63 mph for the overall model. It was higher 

for male drivers and lower for female drivers compared to the overall model, which shows no 

reaction to the first sign, which was a lane merge sign. The first major reaction to the 

presence of the work zone occurred at about 250 feet upstream of the DMS. The mean speed 

was gradually reduced in reaction to the speed limit sign at about 1,000 feet upstream of the 

taper and further to the start of the taper and the flashing arrow sign. After a period of steady 

speed at the taper area, drivers reacted to the presence of equipment and workers at about 

1,100 feet upstream of the work area.  

Surprisingly, male drivers’ first major reaction was to the presence of the first sign at 

about 250 feet upstream of the lane merge sign. The mean speed gradually reduced until 
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about 400 feet after the speed limit sign and then remained constant for about 1,000 feet. The 

next major reaction for male drivers was at about 100 feet prior to the start of taper which 

was continued to the work area. In contrast, female drivers first major reaction was at about 

150 feet before the DMS sign and the speed reduction continued until about 100 feet 

upstream of the taper point, remaining constant for about 1,600 feet. This reaction involved a 

more rapid speed reduction compared to male drivers. The next reaction was a gradual speed 

reduction started at 1,000 feet prior to the work area. The overall model is closer to the 

female drivers’ model as as the majority of traces in this work zone belonged to that 

particular group. 

The closed lane model shows the first reaction at 400 feet upstream of the DMS with 

a rapid speed reduction until 800 feet before the taper location. There was a more gradual 

decline from this point to about 500 feet upstream of the work area, remaining steady through 

the work area. The open lane model reveals the first major reaction was at about 150 feet 

upstream of the DMS, similar to that of the female drivers, with a gradual speed reduction all 

the way to the work area. 

The speed variations for the overall model was 10.8 mph prior to the first sign, started 

to reduce in reaction to the DMS to about 10.2 mph, particularly for the upper confidence 

limit with a 2.2 mph reduction. The width of the confidence interval continued to become 

narrower all the way to the work area at about 7.4 mph.  

The width of the confidence interval for female drivers was about 11.5 mph up to the 

speed limit sign where it started to become narrower at about 8.8 mph and remained steady 

for the rest of the travel in the work zone, however, it was 11 and 7.9 mph for male drivers at 

similar locations.  
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The confidence interval in the closed lane model was wider upstream, narrowed 

rapidly at the first warning sign until 300 feet after the speed limit sign, where it widened a 

little and remained the same for the rest of the work zone. 

4.5.2.2 Functional Boxplots 

The functional boxplot for the overall model shows the upstream speeds were almost 

equally spread at above and below the median. The tendency increased toward the upper 

range of third quartile after the first warning sign and put more weight on the second quartile 

closer to the lower limit in reaction to the DMS. The speeds show considerable fluctuations 

in reaction to the DMS and the speed limit sign. After the speed limit sign, speed tendency 

shifted toward the upper range of third quartile before reacting to the work area at about 800 

feet prior to that. The shift was toward the lower quartile range from this point on. The 50% 

middle range has a relatively low depth up to the taper area, where the depth gets much 

closer to the extremes, particularly to the lower extreme. 

The boxplots for male and female drivers revealed contradicting conditions. The 

female drivers’ speeds show large fluctuations throughout the work zone compared to male 

drivers.  The tendency was toward the upper range of the third quartile until the taper area, 

where it shifted toward the lower range for female drivers, however, the speeds put more 

weight on the third quartile for male drivers after the taper toward the work area. The 50% 

middle depth is also fluctuating for female drivers. It started to get narrower in reaction to the 

first 3 signs before gets wider and closer to lower extreme in traction to the taper area. 

However, the male drivers 50% middle data was deep and close to the lower extreme at the 

upstream of work zone until after reaction to the first 2 signs where it became narrower and 

remained constant throughout the work zone. 
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Figure 4.15 Plots of mean speed, confidence interval, and functional boxplot in work 

zone two 

Left panel. Plot of mean speed and confidence interval for speed time series traces for overall 

traces (a), male drivers (b), female drivers (c), closed lane traces (d), and open lane traces (e) 

Right panel. Plots of functional boxplots for the corresponding categories to the left 

a) 

(b) (a) 

(e) 

(b) 

(c) 

(d) 
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There was substantial variations in the 50% middle depth for closed lane drivers. It 

was almost similar to the non-outlier extremes at the upstream. It started to become narrower 

rapidly after the DMS and was getting wider again in reaction to the work area where the 

lower range was similar to the lower extreme throughout the work area. The open lane 

drivers’ functional boxplot was quite similar to the overall boxplot. 

4.5.2.3 Vehicle Acceleration Profiles 

The vehicle acceleration for each speed profile in work zone two was calculated from 

the functional data and were plotted in Figure 4.16. The speed reduction was observed in 

reaction to the DMS sign located after the merge sign at 0.31 miles upstream of the taper. 

The deceleration was then continued with lower intensity toward the taper and the work area. 

The maximum deceleration rate in reaction to the DMS sign which was located at 0.27 miles 

upstream of the taper location. The deceleration rate was then flattened for the remaining of 

the work area. There were few drivers with so many fluctuating deceleration reactions 

throughout the work zone. The sinusoidal waves were in between -2 to 2 mph per second. 

The deceleration rate for female drivers was relatively higher than male drivers, 

specifically in reaction to the DMS. The closed lane drivers decelerated to the presence of the 

DMS while they had no reaction to the DMS when it was applied at 0.8 miles upstream of 

the taper in work zone one. The open lane drivers’ deceleration profiles were almost straight 

after a small deceleration at the DMS, however, few outliers violated the flatness of the 

profiles. The most outstanding outliers were in the closed lane and female drivers groups. 

4.5.2.4 Effectiveness of Safety Measures 

Changes in the mean and the associated variations for the speed profiles, as drivers 

approached and travelled through work zone two with an identified set of safety measures,  
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Figure 4.16 Vehicle acceleration in work zone two with left lane closure and a DMS 

after the lane merge sign 
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are shown in Table 4.6. The change in the mean speed was calculated from a legible distance 

upstream of each safety feature. The merge sign had a significant influence on male drivers, 

where overall, female, closed lane and open lane drivers had no reactions to it. 

The first significant reaction to the presence of the work zone started at about 1,700 

feet upstream of the taper in reaction to the DMS. Surprisingly, the reaction started earlier for 

male drivers and closed lane drivers at 1,950 and 1,750 feet upstream of the taper, 

respectively. The presence of the DMS had a significant influence on the overall, male, and 

closed lane drivers at a 5% level, while female and open lane drivers had no significant 

reactions  

Significant reactions were observed at the speed limit sign, the start of the taper, the 

flashing arrow, and the work area for overall, female, and open lane drivers. Male drivers had 

a substantial reaction to the work area, but had limited reactions at the speed limit sign and 

the taper point. Closed lane drivers reacted significantly to the presence of the DMS, the 

speed limit sign, the start of the taper, and the work area, but their reaction to the flashing 

arrow was not significant. 

Speed variations at the upstream of the merge sign, which happened to be the first 

sign in this work zone, was lower for closed lane drivers compared to other groups. Male 

drivers had slightly higher variations than female drivers. The merge sign caused a slight 

increase in speed variability for female drivers, with no major effect on other groups. After 

the first major reaction to the presence of the work zone upstream of the DMS, speed 

variability was decreased for overall, female, closed lane, and open lane drivers, however, the 

male drivers showed an increase in speed variation. All other safety features from the DMS 

to the work area successfully reduced the variation in speed for all groups, with the exception  
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Table 4.6 Change in mean speed and standard deviation reacting to work zone two safety features 
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Safety 

Measure

Mean 62.68 62.62 0 62.62 -0.82* 61.95 -1.46*** 58.59 -1.25*** 58.37 -1.37*** 56.42 -1.38**

SD 5.51 5.72 0.04 5.88 -0.71 5.19 -0.46 4.45 -0.07 4.47 -0.14 3.98 -0.2

Up. CI 73.48 73.84 0.07 74.14 -2.19 72.13 -2.35 67.32 -1.37 67.13 -1.64 64.21 -1.75

Lo. CI 51.88 51.41 -0.07 51.09 0.57 51.79 -0.58 49.85 -1.14 49.6 -1.09 48.62 -1

Mean 64.6 64.47 -0.54*** 64.26 -1.88** 62.54 -1.08* 60.32 -0.51 60.24 -0.96 57.78 -0.74***

SD 5.64 5.75 0.04 5.81 -0.17 5.63 -0.47 4.01 -0.06 3.95 0.1 4.1 -0.1

Up. CI 75.7 75.73 -0.45 75.64 -2.07 73.57 -1.98 68.18 -0.67 67.99 -0.73 65.83 -0.94

Lo. CI 53.6 53.2 -0.62 52.88 -0.03 51.51 -0.17 52.47 -0.46 52.5 -1.17 49.74 -0.54

Mean 61.83 61.8 0.24 61.88 -0.33 61.69 -1.63*** 57.81 -1.56*** 57.53 -1.55*** 55.8 -1.66***

SD 5.32 5.61 0.14 5.86 -0.82 5.06 -0.5 4.49 -0.32 4.5 -0.39 3.83 -0.45

Up. CI 72.27 72.79 0.52 73.37 -1.95 71.61 -2.62 66.61 -2.18 66.35 -2.31 63.3 -2.53

Lo. CI 51.38 50.8 -0.03 50.39 1.28 51.78 -0.65 49 -0.92 48.7 -0.79 48.3 -0.78

Mean 64.48 64.49 0.09 64.62 -1.41** 63.39 -1.86*** 58.54 -1.29** 58.27 -1.4*** 56.17 -1.43**

SD 4.79 4.98 -0.01 5.09 -1.41 3.79 -0.73 3.8 -1.08 3.94 -0.09 3.56 -0.19

Up. CI 73.86 74.27 0.04 74.6 -4.16 70.82 -3.3 66 -1.46 65.99 -1.57 63.16 -1.82

Lo. CI 55.09 54.72 0.11 54.64 1.35 55.96 -0.42 51.08 -1.11 50.53 -1.21 49.18 -1.04

Mean 61.58 61.47 -0.04 61.38 -0.44 61.07 -1.21*** 58.62 -1.2*** 58.43 -1.35*** 56.57 -1.35**

SD 5.72 5.93 0.04 6.08 -0.27 5.78 -0.3 4.88 -0.06 4.85 -0.18 4.27 -0.2

Up. CI 72.79 73.09 0.05 73.31 -0.99 72.4 -1.79 68.19 -1.35 67.93 -1.7 64.94 -1.73

Lo. CI 50.37 49.86 -0.13 49.46 0.09 49.75 -0.64 49.04 -1.07 48.93 -1.01 48.2 -0.96

SD = Standard Deviation, Up. CI = Upper Comfidence Interval, Lo. CI = Lower Confidence Interval

All 

42 Traces

Male 

Drivers 

13 Traces

Female 

Drivers 

29 Traces

Closed 

lane 16 

Traces

Open lane 

26 Traces

1,700

1,950

1,650

1,750

1,600

Significance codes: 0.01%***  0.05%**   0.1%*

2
2
4
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of male drivers at the flashing arrow. The presence of the DMS, as the first significant feature 

at 1,400 feet upstream of the taper point was successful in getting drivers’ attention to have a 

significant reaction to the work zone.  

4.5.3 Left Lane Closure with a DSFS after Work Zone First Warning Sign 

Functional data analysis were used to identify the underlying process of driver 

behavior reacting to safety measures and summarized similarities and differences of 76 traces 

in work zone three from one-quarter mile upstream of the first work zone warning sign (at 

0.5 mile upstream of the taper) all the way to the work area. The work zone speed limit was 

45 mph, 10 mph below the roadway speed limit. A series of safety measures applied in this 

work zone included the first work zone warning sign with an attached advisory speed plate of 

50 mph, a DSFS, second work zone warning sign with an attached advisory speed plate of 45 

mph, a lane merge sign with an attached advisory speed plate of 45 mph, a taper, a flashing 

arrow, and channelization at -0.5, -0.4, -0.28, -0.18, 0.03, and 0.18 miles from the start of 

taper respectively. In this work zone a DSFS was located after the first work zone warning 

sign. 

4.5.3.1 Mean Speed and Confidence Interval of Functional Objects 

The average mean speed at the upstream of the first sign was about 64 mph for the 

overall model. It was higher for closed lane drivers and lower for open lane drivers as 

expected. The upstream speed was almost similar for male and female drivers. The overall 

model shows the first major reaction occurred at about 600 feet upstream of the first work 

zone warning sign which was at 500 feet upstream of the DSFS. It was a relatively rapid 

speed reduction to the first two safety features and continued to about 200 feet before the 

lane merge sign. The mean speed remained constant until about 500 feet upstream of the 



www.manaraa.com

226 

 

 

taper point where reacted to the taper and the flashing arrow sign. The next reaction was 

observed at about 600 feet prior to channelization when speed was rapidly reduced for about 

800 feet and remained steady for the short distance before the next reaction occurred to the 

presence of the work area at 400 feet upstream of that. 

Male drivers’ mean speed revealed a late reaction to the presence of the work zone at 

about 200 feet compared to female drivers with early reaction at about 750 feet upstream of 

the first warning sign. The male drivers’ reaction was a rapid speed reduction until the 

second warning sign, then remained constant until about 450 feet before the merge point 

when they reacted to the taper area and the flashing arrow. However, the female drivers’ 

reaction extended longer up to the lane merge sign, then was constant until about 200 feet 

before the taper area and flashing arrow. There was a significant reaction to the 

channelization and the work area for both genders, where male drivers reacted a little erliear 

than female drivers ( about 100 ft) at about 1,500 feet upstream of the work area. 

The closed lane model presents a late reaction compared to any other driver group at 

the first warning sign, which was located at 450 feet before the DSFS, while the open lane 

drivers’ model showed the earliest reaction to the presence of work zone at 900 feet upstream 

of the first warning sign. 

The width of the confidence interval for the overall model was about 10.5 mph 

upstream of the first warning sign, became wider in reaction to the first warning sign and the 

DSFS at about 13 mph, then decreasing in reaction to the work area at 10.8 mph. The 

confidence interval was slightly wider for male drivers compared to female drivers upstream 

of the first warning sign and after their reaction to the first two safety features. However, it 

became noticeably wider for female drivers after reacting to the merge sign at 13.9 mph  
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Figure 4.17 Plots of mean speed, confidence interval, and functional boxplot in work 

zone three 

Left panel. Plot of mean speed and confidence interval for speed time series traces for overall 

traces (a), male drivers (b), female drivers (c), closed lane traces (d), and open lane traces (e) 

Right panel. Plots of functional boxplots for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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compared to 11.6 mph for female drivers and was 11.9 and 10.3 mph at the work area 

forfemale and male drivers, respectively. The confidence interval for closed lane drivers was 

about 3 mph wider than open lane drivers at both upstream of the first sign and at the work 

area. 

4.5.3.2 Functional Boxplots 

The functional boxplot for the overall model shows the upstream speeds tendencies 

were toward the upper envelope. The depth of the middle 50% speed profiles was increased 

after the DSFS until drivers started to react to the lane merge sign when it was decreased 

again toward the taper area. There was an increase in the upper envelope from the taper point 

to 400 feet before the speed limit sign. The speeds tended toward the upper envelope from 

upstream of the taper location to the work area. 

The lower envelope and lower extreme was exactly similar for male drivers, while 

female drivers speeds tended toward the upper extreme with a higher weight on the second 

quartile at upstream of the first warning sign. Female drivers’ speeds were then showed a 

wider depth in second quartile which were in close proximity with the lower extreme after 

reacting to the DSFS and continued all the way to the taper area. The male drivers speed 

tended toward the upper envelope from upstream of the taper to the work area. However, 

female drivers speed were mainly below the median toward the lower envelope. There were 

wide gaps between the upper envelope and the upper extreme for both male and female 

drivers, which was prior to the taper area for male and more obvious after the DSFS for 

female drivers.  

The closed lane middle 50% speeds median was closer to the higher envelope for the 

majority of the work zone with a higher weight on the third quantile. There was a big gap 
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between upper envelope and upper extreme for closed lane drivers, while the gap was larger 

in the lower envelope and extreme for the open lane drivers. There was less variability in the 

middle 50% depth, but higher extreme and outliers for the open lane drivers. 

In short, speeds tended to be toward the higher limit of the 50% depth for male and 

closed lane drivers, compared to female and open lane drivers. 

4.5.3.3 Vehicle Acceleration Profiles 

The vehicle acceleration for each speed profile in work zone three was calculated 

from the functional data and were plotted in Figure 4.18. There were two major deceleration 

points in this work zone. The first major slowdown was after the first warning sign in 

reaction to the DSFS at 0.4 mile upstream of the taper point which reached the maximum 

deceleration. The second major deceleration occurred in reaction to the work zone speed 

limit sign at about 1,000 feet upstream of the work area. The deceleration rate in between the 

two major one was relatively low. There were few drivers with very high deceleration 

fluctuations which were repeated frequently throughout the work zone. Overall, the rate of 

deceleration was high reacting to the safety measure layout in this work zone.  

The deceleration magnitude for male and closed lane drivers were observed to be 

higher than female and open lane drivers. The magnitude of deceleration fluctuations was 

quite high for closed lane drivers, however, there were two drivers in the open lane who had 

high deceleration in reaction to the DSFS. 

4.5.3.4 Effectiveness of Safety Measures 

Drivers reacted to the presence of a series of safety features as they approached and 

travelled through work zone three. Changes in the mean and the associated variability for 

speed profiles are shown in Table 4.7.  
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Figure 4.18 Vehicle acceleration in work zone three with left lane closure and a DSFS 

after the first warning sign 
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legible distance upstream of each safety feature to the feature. The mean speed at the 

upstream of the work zone first warning sign was around 63 mph for overall, male, and 

female drivers, while it was higher for closed lane drivers at 66 mph, and lower for open lane 

drivers at 61 mph. The average mean speed upstream of the first warning sign was about 

15% higher than the roadway speed limit of 55 mph.  

The first significant reaction was observed upstream of the first work zone warning 

sign at 3,100 feet upstream of the taper location. The male and closed lane drivers’ reactions 

started at a closer proximity to the taper point at 2,950 and 2,850 feet, respectively. However, 

open lane and female drivers reacted earlier at 3,250 and 3,000 feet upstream of the taper 

point, respectively. 

The safety features utilized in this work zone were all significant getting drivers to 

slow down for overall, male, and closed lane drivers. The first three measures, the first 

warning sign with an attached advisory speed plate of 50 mph, a DSFS, and a second work 

zone warning sign with an attached advisory speed plate of 45 mph, as well as the speed limit 

sign and the work area, were all effective to slow the traffic down for all five models in the 

analysis at 1% significance level. The flashing arrow was significant at the same level for 

overall, male, and closed lane drivers, while it was significant at 5% level for open lane 

drivers and was not significant for female drivers. 

The standard deviation at the upstream of the first work zone was higher for male 

drivers compared to any other group. After the first major reaction to the work zone, the first 

work zone warning sign reduced the speed variability for all groups. The overall speed 

variation was increased after reacting to the DSFS, specifically for female and closed lane 

drivers. The increased variation for female drivers was about 162% higher than male drivers.
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Table 4.7 Change in mean speed and standard deviation reacting to work zone three safety features 
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Safety 

Measure

Mean 63.55 63.27 -0.81*** 62.58 -2.46*** 57.46 -0.89*** 55.68 -0.56*** 54.58 -0.91*** 54.46 -1.16*** 52.15 -1.91*** 49.12 -1.84***

SD 5.85 5.37 -0.23 5.17 0.23 6.61 0.25 6.99 -0.17 6.29 -0.26 6.23 -0.33 5.88 0.69 6.57 -1.05

Up. CI 75.02 73.8 -1.25 72.72 -2.02 70.42 -0.4 69.37 -0.89 66.92 -1.42 66.67 -1.81 63.68 -0.56 61.99 -3.88

Lo. CI 52.08 52.74 -0.36 52.45 -2.91 44.5 -1.38 41.98 -0.23 42.24 -0.4 42.26 -0.52 40.61 -3.25 36.25 0.21

Mean 63.61 63.48 -0.73*** 62.87 -2.49*** 57.46 -0.9*** 55.75 -0.48*** 54.73 -1.04** 54.59 -1.27*** 52.19 -1.93*** 49.15 -2.11***

SD 6.15 5.65 -0.26 5.42 0.06 6.91 0.26 7.21 -0.45 5.91 -0.25 5.85 -0.48 5.35 1.18 6.24 -1

Up. CI 75.67 74.57 -1.26 73.49 -2.36 71 -0.36 69.87 -1.35 66.32 -1.54 66.06 -2.22 62.68 0.37 61.39 -4.08

Lo. CI 51.55 52.4 -0.2 52.24 -2.6 43.91 -1.4 41.62 0.4 43.15 -0.55 43.11 -0.31 41.69 -4.22 36.91 -0.14

Mean 63.43 62.88 -0.95*** 62.07 -2.43*** 57.47 -0.91*** 55.54 -0.71*** 54.32 -0.68 54.24 -0.98 52.08 -1.88*** 49.06 -1.34***

SD 5.38 4.9 -0.17 4.74 0.57 6.17 0.21 6.7 0.36 7.05 -0.27 6.97 -0.11 6.86 -0.08 7.24 -1.17

Up. CI 73.98 72.48 -1.28 71.36 -1.31 69.56 -0.49 68.7 -0.04 68.14 -1.2 67.9 -1.18 65.52 -2.03 63.26 -3.64

Lo. CI 52.89 53.29 -0.63 52.79 -3.56 45.37 -1.33 42.42 -1.39 40.49 -0.14 40.58 -0.77 38.64 -1.73 34.87 0.94

Mean 66.01 65.98 -0.94*** 65.18 -2.42*** 60.59 -1*** 58.4 -0.97*** 56.19 -1.36** 55.96 -1.53*** 52.89 -2.77*** 49.55 -1.87***

SD 5.33 5.09 -0.09 5 0.49 6.67 0.22 7.02 -0.17 6.27 -0.27 6.2 -0.41 5.82 0.92 6.83 -0.94

Up. CI 76.54 75.95 -1.11 75 -1.47 73.67 -0.57 72.17 -1.31 68.48 -1.9 68.12 -2.34 64.29 -0.97 62.93 -3.72

Lo. CI 55.66 56 -0.76 55.38 -3.38 47.51 -1.44 44.64 -0.64 43.91 -0.83 43.8 -0.72 41.49 -4.58 36.16 -0.03

Mean 61.13 60.7 -0.69*** 60.12 -2.51*** 54.49 -0.79*** 53.09 -0.17 53.06 -0.48 53.05 -0.82** 51.44 -1.08*** 48.71 -1.79***

SD 5.34 4.3 -0.3 4.03 -0.07 5.06 0.47 5.95 0.14 6 -0.06 5.99 -0.12 5.93 0.57 6.37 -1.17

Up. CI 71.59 69.12 -1.28 68 -2.63 64.4 0.14 64.76 0.09 64.84 -0.61 64.78 -1.04 63.07 0.03 61.2 -4.1

Lo. CI 50.68 52.27 -0.09 52.22 -2.37 44.58 -1.72 41.42 -0.44 41.28 -0.36 41.31 -0.59 39.81 -2.19 36.23 0.51

Significance codes: 0.01%***  0.05%**   0.1%*

SD = Standard Deviation, Up. CI = Upper Comfidence Interval, Lo. CI = Lower Confidence Interval
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76 
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Subsequently, the second warning sign caused an increase in speed variability for all 

groups, which was more pronounced for open lane drivers. The merge sign, the taper 

location, and the flashing arrow reduced the speed variability for all groups, with the 

exception of female drivers whose speed variation was increased when reacted to the merge 

sign. On the contrary, the speed limit sign caused an increase in speed variability for all but 

female drivers. The speed variation was reduced for all groups in reaction to the work area.  

In summary, the safety features’ layout in this work zone was very successful to get 

drivers’ attention to slow down from a relatively high speed of over 63 mph at the upstream 

to the work zone speed limit of 45 mph. The DSFS was found to be the single most effective 

measure in slowing traffic by as much as 5% in mean speed reduction. Although male drivers 

had higher speed variability at the upstream of the work zone’s first warning sign, their speed 

variability was the lowest in the work area and was about 15% lower than female drivers. 

4.5.4 Right Lane Closure with a DSFS after Work Zone First Warning Sign 

The features of functional data analysis were utilized to identify the underlying 

process of driver behavior in reaction to various safety features in work zone four for 68 

traces from one-quarter mile upstream of the first work zone warning sign (at 0.5 mile 

upstream of taper) all the way to the work area.  The physical location of work zone four 

along with safety measures layout and location are almost identical to those in work zone 3. 

The only difference in this work zone is the closure of the right lane instead of the left lane. 

Therefore, the outside lane is the open lane in this work zone compared to the work zone 

three. 
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4.5.4.1 Mean Speed and Confidence Interval of Functional Objects 

The average mean speed at the upstream of the first warning sign was about 62 

mphfor the overall model. It was higher for closed lane drivers and lower for open lane 

drivers as was to be expected. The upstream speed was nearly similar for male and female 

drivers. The overall model shows the first reaction occurred at about 500 feet upstream of the 

first work zone warning sign which was located at 500 feet upstream of the DSFS. It was a 

flat and a steady speed reduction passed the DSFS and up to 300 feet before the second 

warning sign. The mean speed then remained steady for about 90 feet where drivers reacted 

to the presence of the taper and flashing arrow at 700 feet upstream of the taper point. The 

next major speed reduction was to the start of work area at about 700 feet before that. 

The first speed reduction for male drivers was after the first warning sign at 350 feet 

prior to the DSFS until 150 feet after the sign. The male drivers next reaction was at 450 feet 

upstream of the taper area and the flashing arrow. The female drivers on the other hand 

reacted to the first sign at about 600 feet upstream of that. The speed reduction continued all 

the way to 300 feet before the channelization. The next major reaction for female drivers was  

600 feet upstream of the the work area. 

Closed lane drivers’ reaction to the DSFS started at about 300 feet upstream of that, 

with the next major reaction at 1,100 feet upstream of the taper point, and the last reaction at 

the start of the work area at 950 feet before that. The open lane drivers reduced their speed 

rapidly to the presence of the first warning sign and the DSFS, which continued until after 

the second warning sign. The mean speed then remained constant until after the flashing 

arrow sign, where they started to react gradually to the presence of the work area. 
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The confidence interval for the overall model was about 11.75 mph upstream of the 

first warning sign, increasing to 12.5 mph after reacting to first two safety measures, 14.75 

mph upstream of the flashing arrow, and then decreasing to 12 mph after reacting to the work 

area. The confidence interval was 11.7 and 10.4 mph after their first significant reactions 

upstream of the first warning sign, 12.7 and 11.4 mph after the first two safety features, 14.6 

and 13.4 mph upstream of the flashing arrow, and 13.5 and 7.5 mph at the work area for male 

and female drivers, respectively. The open lane confidence interval was about 20% higher 

upstream of the first sign and 38% higher at the work area than for closed lane drivers. 

4.5.4.2 Functional Boxplots 

The overall model functional boxplot reveals an equal spread of speeds above and 

below the median from upstream of the first warning sign to the taper area and then tends 

more toward the upper envelope in reaction to the flashing arrow, the speed limit sign, and 

the work area. There was a larger gap between the upper envelope and the extreme compared 

to lower envelope and the extreme up to the work area reaction point. 

The middle 50% depth is wider for male drivers from the upstream of the first sign to 

the second warning sign compared to female drivers. The male drivers’ speeds weighted 

more toward the upper envelope, while female drivers’ speeds tended toward the lower 

envelope and below the median from upstream of the first sign to the start of the taper. The 

middle 50% depth for female drivers shows a higher variability from the taper location to the 

work area, however, male drivers’ speed profiles show a narrower middle 50% depth 

variability and higher extremes for the same distance. There was a high variability for female 

drivers’ median speed compared to male drivers. The functional boxplot shows an outlier for 

male drivers speed profiles.  
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Figure 4.19 Plots of mean speed, confidence interval, and functional boxplot in work 

zone four 

Left panel. Plot of mean speed and confidence interval for speed time series traces for overall 

(a), male drivers (b), female drivers (c), closed lane (d), and open lane (e) traces. Right panel. 

Plots of functional boxplots for the corresponding categories to the left 

(c) 

(b) 

(a) 

(d) 

(e) 
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There were considerable gaps in between envelopes and extremes on both ends, with 

larger gaps for the upper envelope and extreme for the male and closed lane drivers 

throughout the work zone. 

The open lane speed profiles show a negligible gap between the upper envelope and 

the extreme, but a large gap for the lower envelope and the extreme from upstream of the 

first sign to the point of reaction to the work area. The closed lane speeds equally spread on 

both sides of the median with higher tendencies to the upper side after the speed limit sign to 

the work area, however, the tendency was toward the lower side of median in the majority of 

the work zone for open lane speed profiles. The median for open lane presents a high 

variability compared to closed lane speed traces. The depth of the middle 50% speed is 

narrower for open lane when compared to closed lane speed profiles. The functional boxplot 

for open lane speed traces shows two outliers, while the closed lane profiles contain no 

outliers. 

4.5.4.3 Vehicle Acceleration Profiles 

The vehicle acceleration for each speed profile in work zone four was calculated from 

the functional data and were plotted in Figure 4.20. There were three locations with relatively 

higher deceleration rates. The three major deceleration happened in reaction to the DSFS, the 

taper area, and the work area, however the deceleration magnitude at the DSFS was not as 

high as the other two. There were few outliers which had high deceleration rates at the taper 

and work areas.  

The deceleration changed into acceleration after drivers entered the designated work 

area with no activity at the start of the work area, however, there was the presence of 

equipment and workers further down the work area which caused a substantial deceleration. 
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Figure 4.20 Vehicle acceleration in work zone four with a right lane closure and a DSFS 

after the first warning sign 
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The most obvious outliers were five male drivers who drove in the closed lane and 

had a high fluctuations throughout the work zone with higher deceleration rates at the taper 

and work areas. One male driver showed an extremely high deceleration and acceleration 

rates of ±3 mph per second in the vicinity of the work area. Overall, the deceleration rate was 

high in reaction to the safety measure layout in this work zone with a high sinusoidal waves.  

There were a few female drivers with high deceleration fluctuations behavior, but the 

magnitude of that was not as high as that for male drivers. The deceleration fluctuations were 

significantly higher for male and closed lane drivers. 

4.5.4.4 Effectiveness of Safety Measures 

Changes in mean and the associated variations for speed profiles, as drivers 

approached and travelled through work zone 4, with an identified set of safety measures, are 

shown in Table 4.8. The change in mean speed was calculated from a legible distance 

upstream of each countermeasure. 

The first significant reaction was observed at the upstream of the first work zone 

warning sign at 3,150 feet upstream of the taper location. The male and closed lane drivers’ 

reactions started later at 3,100 and 3,000 feet upstream of the taper point, respectively. 

However, open lane and female drivers reacted earlier at 3,400 and 3,300 feet upstream of 

the taper, respectively. 

The first work zone warning sign with the attached 50 mph advisory plate was 

effective in reducing the mean speed at 5% significance level for all groups. The DSFS had a 

higher effectiveness in reducing the mean speed for all groups at 1% significance level. The 

second warning sign with the attached 45 mph advisory plate was only effective in reducing 

open lane drivers’ mean speed at 5% significance level. 
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Table 4.8 Change in mean speed and standard deviation reacting to work zone four safety features 
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Safety 

Measure

Mean 62.76 62.56 -0.27*** 61.99 -1.51*** 59.59 -0.2* 59.19 -0.31** 57.79 -2.72*** 57.54 -3.31*** 51.66 0.53 47.62 -2.46***

SD 6.12 5.83 0.05 5.95 0.22 6.36 0.16 6.8 0.23 7.46 0.19 7.52 0 7.34 -0.43 5.8 0.33

Up. CI 74.75 73.98 -0.16 73.66 -1.08 72.07 0.1 72.52 0.13 72.41 -2.34 72.28 -3.32 66.05 -1.37 58.99 -1.82

Lo. CI 50.77 51.13 -0.37 50.33 -1.95 47.12 -0.51 45.86 -0.77 43.17 -3.11 42.81 -3.31 37.28 0.31 36.24 -3.1

Mean 63.17 62.88 -0.19** 62.43 -1.51*** 60.12 -0.09 60.02 -0.12 59 -2.66*** 58.76 -3.23*** 53.11 -0.45 48.37 -2.17***

SD 6.18 5.96 0.08 6.12 0.27 6.5 0.03 6.67 0.19 7.35 0.38 7.43 0.17 7.55 -0.58 6.45 0.44

Up. CI 75.28 74.56 -0.04 74.43 -0.98 72.85 -0.02 73.1 0.24 73.4 -1.9 73.33 -2.89 67.92 -1.59 61.01 -1.3

Lo. CI 51.07 51.21 -0.36 50.43 -2.03 47.38 -0.16 46.94 -0.49 44.6 -3.41 44.2 -3.58 38.3 0.69 35.72 -3.04

Mean 62.21 62.41 -0.39** 61.64 -1.53*** 59.08 -0.38 58.23 -0.63** 56.17 -2.96*** 55.89 -3.6*** 49.31 -0.73** 46.44 -2.89***

SD 6.1 5.32 -0.02 5.33 0.18 5.82 0.31 6.52 0.08 6.81 0.05 6.84 -0.15 6.14 -0.15 4.04 -0.32

Up. CI 74.17 72.85 -0.44 72.1 -1.18 70.5 0.22 71 -0.45 69.51 -2.86 69.29 -3.89 61.34 -1.03 54.36 -3.52

Lo. CI 50.25 51.97 -0.34 51.2 -1.89 47.67 -0.98 45.46 -0.8 42.82 -3.05 42.48 -3.3 37.28 -0.43 38.51 -2.26

Mean 62.18 62.2 -0.2** 61.74 -1.5*** 59.42 -0.14 59.17 -0.31** 57.81 -2.51*** 57.59 -3.11*** 51.88 -0.55 47.72 -2.36***

SD 5.92 5.54 0.04 5.68 0.47 6.34 0.06 6.6 0.28 7.4 0.23 7.47 0.01 7.39 -0.37 5.53 -0.01

Up. CI 73.78 73.06 -0.12 72.87 -0.58 71.85 -0.01 72.11 0.24 72.31 -2.05 72.22 -3.07 66.36 -1.25 58.57 -2.4

Lo. CI 50.57 51.33 -0.28 50.61 -2.41 46.99 -0.26 46.22 -0.85 43.31 -2.98 42.95 -3.15 37.4 0.16 36.88 -2.33

Mean 64.81 63.82 -0.49** 62.89 -1.56*** 60.2 -0.45** 59.3 -0.37 57.71 -3.44*** 57.38 -4.01*** 50.87 -0.41 47.14 -2.58***

SD 6.56 6.81 0.14 6.97 -0.56 6.62 0.5 7.67 0.09 7.93 0.02 7.95 -0.11 7.34 -0.67 6.89 1.2

Up. CI 77.67 77.17 -0.22 76.55 -2.66 73.19 0.52 74.34 -0.2 73.25 -3.39 72.96 -4.23 65.26 -1.72 60.65 -0.23

Lo. CI 51.95 50.47 -0.76 49.23 -0.46 47.22 -1.44 44.25 -0.52 42.16 -3.47 41.8 -3.79 36.48 0.9 33.62 -4.93

Significance codes: 0.01%***  0.05%**   0.1%*

SD = Standard Deviation, Up. CI = Upper Comfidence Interval, Lo. CI = Lower Confidence Interval
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The lane merge sign was effective in reducing speed for overall, female, and open 

lane drivers at 5% significance level. The taper location, the flashing arrow, and the work 

area were all substantially effective in reducing speed at 1% singnificance level. The speed 

limit sign was successful in reducing female drivers’ mean speed at 95% confidence level. 

The first work zone warning sign, along with the DSFS, were not able to reduce 

speed variability for overall, male, female and closed lane drivers, however, the DSFS was 

able to reduce speed variation for open lane drivers. Male drivers’ speed variability was 

higher in reaction to the DSFS compared to female drivers. The speed variability was 

increased at the second warning sign with an attached 45 mph advisory plate, a merge sign 

with attached 45 mph advisory plate, and the taper location. There were mixed results for 

variability changes in reaction to the flashing arrow. The speed varition was slightly reduced 

for female and open lane drivers, slightly increased for male drivers, and resulted in no 

changed for the overall and closed lane drivers. The speed limit sign was very effctive in 

reducing the variability for all groups. The speed variation at the work area was increased for 

all groups with the exceptions of female and open lane drivers 

In short, the first two signs were significantly effective to encourage safe work zone 

driving, while the second warning sign was not significant at the same level. All the 

remaining safety features from the right lane closed sign to the work area were all highly 

effective in reducing the mean speed for the overall model. The condition was somehow 

different on speed variation, as the speed limit sign was the only effective sign to reduce the 

speed variability. 
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4.5.5 Lane Shift 

Various methods of functional data analysis were used to identify the underlying 

process of driver behavior reacting to safety features and summarized similarities and 

differences of 37 traces in work zone five from one-quarter mile upstream of the first work 

zone warning sign (at 1.1 miles upstream of the taper) all the way to the work area. The work 

zone speed limit was 55 mph, which is similar to that for the roadway. A series of safety 

features applied in this work zone included a first work zone warning sign, a highway guide 

sign, barrels tapering the shoulder, and lane shift with an attached both shoulder closed sign 

at -1.1, -0.4, -0.2, and -0.1 miles from the start of the taper, respectively. 

4.5.5.1 Mean Speed and Confidence Interval of Functional Objects 

The average mean speed was about 62 mph for the overall model. It was higher for 

female drivers and lower for male drivers compared to overall model. The overall model 

shows a slight reaction to the work zone first warning sign at 1.1 miles upstream of the lane 

shift location. There was an increase in the mean speed between the first and second signs up 

to 1,000 feet upstream of the highway guide sign, where the first major reaction occured. 

There was a slight increase in the mean speed after the highway guide sign up to 250 feet 

upstream of the lane shift sign, where the mean speed was reduced in reaction to the lane 

shift.  

The first slight reaction for male drivers was at 750 feet before the highway guide 

sign. The female drivers, on the other hand, had a significant speed reduction to the highway 

guide sign at about 1,100 feet prior to that. Female drivers then had a period of speed 

increase before their next major reaction at about 400 feet upstream of the lane shift location. 
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Figure 4.21 Plots of mean speed, confidence interval, and functional boxplot in work 

zone five 

Left panel. Plot of mean speed and confidence interval for speed time series traces in work 

zone 4 for overall (a), male drivers (b), female drivers (c), closed lane (d), and open lane (e) 

traces. Right panel. Functional boxplots for the corresponding categories to the left 

(a) 

(b) 

(c) 

(d) 

(e) 
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Closed lane drivers reacted to the presence of the guide sign in a closer proximity 

with a rapid speed reduction compared to open lane drivers. The closed lane drivers then had 

a period of speed increase before reacting to the lane shift at 200 feet prior to that, however, 

open lane drivers had an earlier and steadier speed reduction in reaction to the highway guide 

sign, which was continued to the lane shift location. 

The confidence interval at 9.6 mph was higher for female drivers, after their first 

significant reaction to the work zone at the upstream of the highway guide sign, compared to 

4.5 mph for female drivers (more than two times higher) and became about 8.3 mph at the 

lane shift area compared to 7.1 mph for male drivers (15% higher). The open lane drivers had 

a higher confidence interval of 8.8 mph upstream of the highway guide sign compared to 6.3 

mph for closed lane drivers, however, it became higher for closed lane drivers at the lane 

shift area, 8.1 and 7.2 mph for closed and open lane drivers, respectively. 

4.5.5.2 Functional Boxplots 

The functional boxplot for the overall model demonstrates variations in middle 50% 

depth and both extremes, however, the depth of variation is narrower compared to work zone 

with lane closure scenarios. The middle 50% depth was getting narrower in reaction to the 

first warning sign and remained almost the same until reached the lane shift area, then 

became wider again. The median speed showed a significant fluctuation inside a narrow 

range. There is a large gap between both envelopes and extremes from upstream of the first 

sign to the first significant reaction upstream of the highway guide sign. A significant speed 

variations was observed at the lower extreme. There are two outliers which are shown in the 

functional boxplot for the overall model. 



www.manaraa.com

245 

 

 

The male drivers’ median speed showed almost no variation for the entire work zone. 

The upper envelope and extreme are the same from upstream of the first sign all the way to 

the first major reaction location upstream of the highway guide sign, however, there is a 

small gap between the lower envelope and the extreme for the entire work zone excluding the 

work area. The middle 50% depth for female drivers is wider than that for male drivers. The 

gap between the two extremes is very wide from upstream of the first sign to the first major 

reaction point for female drivers compared to that for male drivers. The functional boxplots 

for both genders show two outliers. 

The functional boxplot for closed lane traces shows fluctuations in median speed 

from the middle point between the first warning sign and highway guide sign all the way to 

the work area. The speed profiles weighted more toward the third quartile and the median 

speed tended toward the upper envelope for the majority of the work zone. The median speed 

of the open lane traces, on the other hand, showed minimal variability for the entire work 

zone. The upper envelope and extreme are almost the same for the whole work zone for open 

lane traces. The functional boxplots for closed lane and open lane speed traces present two 

and four outliers, respectively. 

4.5.5.3 Vehicle Acceleration Profiles 

The vehicle acceleration for each speed profile in work zone five with a lane shift 

scenario was calculated from the functional data and were plotted in Figure 4.22. The first 

major deceleration was in reaction to highway guide sign at about 0.4 miles upstream of the 

lane shift location. The second significant deceleration was occurred in reaction to the start of 

the lane shift at about 500 feet upstream of that.  

. 
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Figure 4.22 Vehicle deceleration in work zone five with a lane shift and both shoulders 

closure 
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The deceleration phenomenon was less significant in the work zone with a lane shift 

situation, however, there were one or two outliers than other drivers. 

The deceleration magnitude for female and closed lane drivers was slightly higher 

than that for male and open lane drivers at the highway guide sign and at the location of the 

lane shift. 

4.5.5.4 Effectiveness of Safety Measures 

Drivers reacted to the presence of a series of safety features as they approached and 

travelled through work zone five. Changes in mean and the associated variations for speed 

profiles are shown in Table 4.9. The change in mean speed was calculated from a legible 

distance upstream of each feature. 

The work zone’s first warning sign at 1.14 miles upstream of the lane shift location 

had no major effect on drivers to reduce their speed. The first significant reaction was 

identified to be at 2,850 feet upstream of the lane shift location for the overall model. The 

male and female drivers reacted at 2,700 and 2,900 feet upstream of the lane shift point, 

respectively. 

The first major reaction was to the highway guide sign which had a very significant 

effect in reducing the mean speed for all groups at 1% significance level. The presence of 

barrels which tapered the left shoulder was not significant in slowing the traffic down, and in 

fact the mean speed increased at that location. The lane shift sign with indication of both 

shoulders closed was only effective on female drivers in reducing their speed at 1% 

significance level. The start of the lane shift was highly significant in reducing the mean 

speed for overall, female, and closed lane drivers at 99% confidence level, and slightly less 

significant for male and open lane drivers at 5% significance level. 
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Table 4.9 Change in mean speed and standard deviation reacting to work zone five safety features 
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Safety 

Measure

Mean 61.29 60.33 -0.09* 62.96 -0.44*** 62.08 0.73 63.01 -0.24 62.71 -1.53***

SD 5.25 4.77 -0.01 3.83 -0.16 3.36 0.18 3.8 0.2 4.02 -0.1

Up. CI 71.58 69.68 -0.11 70.46 -0.75 68.65 1.1 70.47 0.16 70.59 -1.71

Lo. CI 50.1 50.1 0.8 55.47 -0.15 55.5 0.37 55.55 -0.63 54.84 -1.35

Mean 60.62 59.44 -0.14 62.54 -0.28*** 61.78 0.19 62.16 -0.14 61.98 -1.24**

SD 4.1 3.99 -0.01 2.28 -0.03 2.65 -0.09 2.7 0.34 3.07 0.54

Up. CI 68.67 67.27 -0.17 67.02 -0.24 66.98 -0.01 67.45 0.53 68 -0.18

Lo. CI 52.57 51.62 -0.11 58.06 -0.33 56.57 0.37 56.87 -0.81 55.95 -2.29

Mean 61.92 61.17 -0.1 63.34 -0.59*** 62.34 1.31 63.91 -0.5*** 63.32 -1.64***

SD 6.19 5.38 -0.01 4.88 -0.2 3.99 0.16 4.5 0.21 4.72 -0.48

Up. CI 74.06 71.72 -0.08 72.91 -0.98 70.15 1.61 72.73 -0.08 72.58 -2.59

Lo. CI 49.77 50.62 -0.06 53.77 -0.21 54.52 1.02 55.08 -0.91 54.06 -0.69

Mean 62.55 60.9 -0.16* 63.44 -0.64*** 62.29 1.26 64.21 -0.32 63.79 -2.2***

SD 4.39 4.48 0.05 3.23 -0.14 3.21 0.08 3.33 0.29 3.66 0.47

Up. CI 71.16 69.69 -0.08 69.77 -0.91 68.6 1.41 70.73 0.26 70.96 -1.28

Lo. CI 53.95 52.12 -0.26 57.1 -0.35 55.99 1.11 57.68 -0.89 56.62 -3.13

Mean 59.63 59.6 -0.03 62.32 -0.22*** 61.86 -0.13 61.57 -0.2* 61.33 -0.71**

SD 5.95 5.18 -0.03 4.51 -0.1 3.68 -0.08 3.95 0.2 4.16 -0.47

Up. CI 71.29 69.76 -0.1 71.17 -0.42 69.07 -0.28 69.32 0.18 69.48 -1.62

Lo. CI 47.98 49.45 0.03 53.48 -0.03 54.66 0 53.83 -0.59 53.19 0.19

Overall 

62 Traces
2,850

Male 

Drivers 

29 Traces

2,700

Female 

Drivers 

33 Traces

2,900

Significance codes: 0.01%***  0.05%**   0.1%*

SD = Standard Deviation, Up. CI = Upper Comfidence Interval, Lo. CI = Lower Confidence Interval

Closed 

lane 26 

Traces

2,850

Open 

lane 

36 Traces

2,750

2
4
8
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The standard deviation at upstream of the first warning sign was about 40% higher for 

female drivers compared to their male counterparts. It was also 30% higher for the open lane 

drivers compared to the closed lane drivers. The first warning sign didn’t have any effect on 

speed variation. The highway guide sign was effective in reducing the speed variation for all 

groups.  

The speed variation was increased at the barrels’ location for overall, female, and 

closed lane drivers, while slightly decreased for female and open lane drivers. The lane shift 

sign caused an increase in speed variability for all groups. The start of the lane shift had 

mixed effects on speed variation, increasing speed variability for male and closed lane 

drivers, and decreasing the speed variation for overall, female, and open lane drivers. 

In short, the highway guide sign and the start of the lane shift were both effective 

encouraging drivers to slow down. The speed variability was higher for female and open lane 

drivers compared to male and closed lane drivers from upstream all the way through the lane 

shift location. 

4.6 Summary and Discussion 

The objective of this research was to identify where drivers started to react to the 

presence of a work zone and to assess the effectiveness of safety features utilized to 

encourage drivers to safely traverse the work zone. This was done by using the tools of FDA 

to analyze high frequency speed time series from work zones in SHRP 2 NDS data with 

various characteristics and a smooth underlying process. The FDA is extremely useful to 

describe a complex process of drivers’ interactions with various safety measures in the work 

zone environment which could not be explained by a simple parametric model. The statistical 

methods of the FDA were used to summarize an average drivers’ behavior to investigate their 
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reaction to a series of safety features and evaluate the effectiveness of those features 

individually or collectively.  

The FDA involved several process including the smoothing to convert the raw 

discrete time series data to functional data. The smoothing process of FDA analysis is 

important to remove large noises from the raw data which helps to identify the unbiased 

average driver behavior for a series of repeated speed time series profiles. 

The study investigated behavior of 131 unique drivers with 285 time series speed 

profiles over 5 different work zones, including left or right lane closures and lane shift 

scenarios, with various traffic control layouts. There was a 10 mph speed reduction required 

for all work zones with the lane closure and no speed reduction for the lane shift scenario.  

The conclusions of this research study could provide implications to transportation 

agencies about the effectiveness of safety measures and traffic control layouts in work zones. 

The findings can also provide recommendations about the most effective countermeasures 

and safety features layout that can improve safety in work zones. 

4.6.1 Mean Speed and Safety Feature Effectiveness 

The reduction in mean speed from a legible or visible distance of a feature was used 

to identify the effectiveness of the measure on driver behavior. The legible distance was used 

to identify the effectiveness of an individual countermeasure from an identified distance that 

the change in mean speed can be attributed to the presence of that feature. The plot of mean 

speeds at the safety feature locations for the overall and subset categories in 5 work zones are 

shown in the left panel of Figure 4.23. The plots are showing the driving path from upstream 

all the way to the work area and the interaction of drivers with a series of safety features in 
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multiple work zones. A cursory glance at all 5 work zones shows no major reactions occurred 

until approximately half a mile upstream of the taper location.  

One sample t-test was conducted to test the null hypothesis stating the change in 

mean speed from upstream of a sign to the location of the sign is equal to zero at 95% 

confidence level. The models for work zones with a closed lane scenarios revealed 

significant reactions to the first warning signs when an advisory speed plate was attached to 

it for overall and all sub-categories. The first warning sign at about one mile upstream of 

taper had a significant influence on speed reductions of female and open lane drivers in work 

zone one. The reaction to the first sign in the lane shift scenario at over one mile upstream of 

the taper location was somehow different. The male and closed lane drivers’ reaction were 

more significant than female and open lane drivers. There was an increase in the mean speed 

between the first and second warning sign distanced at about 3,900 feet. The increase in 

mean speed might be due to no construction activity observed by drivers. 

There were significant reactions to the presence of the DSFS for overall and similarly 

for all other sub groups for both left and right lane closure scenarios, however, the 

effectiveness of the DSFS was 50% higher when applied in the left lane closed work zone. 

The DSFS effectiveness was higher than any other safety features applied in work zones to 

capture drivers’ attention.  

The DMS was only effective in slowing down the female and open lane drivers when 

applied at a long distance upstream of the taper point, however, it was more significant when 

applied at a closer proximity to the taper location, for  male and closed lane drivers in 

particular.  
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Figure 4.23 Plot of mean speed and standard deviation at safety features 

Left panel. Plot of mean speed at safety features for speed profiles of all involved groups in 

work zones 1 to 5 from top to bottom. Right panel. Plot of standard deviation at safety 

features for all groups in the corresponding work zone to the left 
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The lane merge sign was found to be significantly effective in reducing the mean 

speed when utilized in a closer proximity to the taper area at less than 1,000 feet distance, 

with the exception of open lane drivers in work zone three. The lane merge sign was only 

significantly effective on male drivers when applied farther from the taper at about 1,900 

feet. 

The static work zone speed limit sign was substantially effective in reducing speed 

when applied right before the taper point, however, it was significantly effective in work 

zone three when applied at 1,100 feet upstream of the work area. The start of the taper and 

flashing arrow were found to be very significant in reducing the mean speed for the overall 

models in work zones with left lane closure scenarios. The work area was found to be 

extremely significant for the overall and all sub category models.  

4.6.2 Risks Associated with Speed Variations 

Past research indicated excessive speed and speed variation are the main contributing 

factors to work zone crashes. The results of the study in chapter 2 also confirmed the fact that 

speed and speed variability significantly contributed to the occurrence of the safety critical 

events in work zones. The results of standard deviations at the location of safety features 

were plotted and shown in the right panel of Figure 4.23. 

The standard deviation needed to be checked to see if it was increased or decreased 

by the presence of each safety measure. An increase in standard deviation in reaction to the 

safety feature could adversely affect the safety and a decrease in standard deviation could be 

a positive outcome for safety.  

The standard deviation upstream of the work zones varied between 3.8 and 6.7 mph 

for all five work zones in the study. It was between 3.8 to 4.8 mph for the work zone one and 
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6 to 6.7 mph for work zone four as the low and the high, respectively. There was a small 

reduction in speed variation at the work zone’s first warning sign and DMS when applied 

immediately after the first sign. This was the case for the second warning sign as well.  

The presence of a DSFS in both the left and right lane closures caused an increase in 

variability of 0.06 to 0.57 mph for male and female drivers, respectively. The presence of a 

DMS after the lane merge sign however, was effective in reducing the speed dispersion by 

0.71 mph for the overall model. The extremes were 1.41 mph for closed lane drivers and -

0.17 for male drivers. The standard deviation after the DSFS was increased in reaction to the 

second warning sign. 

The lane merge sign mainly caused a small increase in speed variation and the effect 

of that on male and female drivers was mixed in different work zones. Even though it was 

effective in reducing the speed dispersion when it was applied with an attached speed 

advisory plate in the left lane closed situation, it had the opposite effect at the right lane 

closure scenario. This might be due to the fact that outside lane drivers, who usually drive at 

a higher speed, didn’t need to merge into the inside or open lane in this case. 

The static speed limit sign in the left closure work zones causes a reduction in speed 

variations for most of the scenarios. It caused an increase in the case of the left lane closure 

when applied 1,300 feet upstream of the work area, however, had the opposite effect in the 

case of right lane closure at similar location.  

The start of the taper and the flashing arrow caused a decrease in the standard 

deviation in the majority of scenarios, however, a small increase was observed in the right 

lane closure case. There was a mixed effect on the work area concerning speed dispersion. 
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The variation decreased by as much as 18% in work zone three and increased by about 6% in 

work zone one for the overall models. 

The informative exploratory feature of funtional boxplot provided a solid range of 

data for analyzing driver behavior in reaction to various safety features in work zones. The 

investigation of functional boxplots revealed the central 50% depth was wider for female and 

open lane drivers. It was observed that male and closed lane drivers’ speeds have a higher 

concentration above the median when the median speed have a higher tendency toward the 

upper envelope. The plots also showed a high median variations for closed lane drivers, 

while open lane drivers revealed higher extremes. The lane shift scenario showed a narrower 

middle depth and lower extremes, however, introduced more outliers. 

4.6.3 Vehicle mean deceleration profiles in work zones 

The average deceleration profiles for all work zones in the study are shown in Figure 

4.24. There are three curves on the plot. The female, male, and overall drivers’ deceleration 

profiles are represented by a solid red line, a solid blue line, and a dotted black line, 

respectively. The orange dashed lines are the locations of safety features in each work zone. 

The average deceleration rates provided very useful visual aids to see how drivers reduced 

their speed in reaction to each safety feature utilized in the work zone for that purpose.  

There were varying deceleration magnitudes in reaction to various features. The rate 

was lower in reaction to the first warning sign and the DMS when it was applied at about one 

mile upstream of the taper point in work zone one. However, the magnitude of deceleration 

was significantly decreased in reaction to the DMS when it was in a closer proximity to the 

taper location.  
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Figure 4.24 Mean of deceleration profiles for studied work zones and involved drivers 

by gender 
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The male drivers reacted to the merge sign and the DMS by decelerating at about 400 

feet prior to the lane merge sign, however, female drivers had a period of acceleration before 

decelerating at about 100 feet prior to the lane merge sign. The maximum deceleration was 

reached at about 600 feet upstream of the taper point. The male drivers, on the other hand, 

had a shorter deceleration distance and started to accelerate from before the DMS to about 

150 feet prior to the taper point, when they had a significant deceleration again. 

The highest deceleration magnitude was observed in reaction to the first warning sign 

and the DSFS in work zone three, which was slightly sharper and lasted a shorter period for 

female drivers compared to the male drivers. The deceleration rate in reaction to the first 

warning sign and the DSFS in work zone four with a right lane closure was less significant 

than that in the work zone three with a left lane closure. There was a very significant 

deceleration in reaction to the taper area in work zone four and to a lesser degree in work 

zone one.  

Periods of accelerations were observed due to inactivity in the work zone after the 

first warning sign, such as in work zone one and five. Drivers started to accelerate after a 

major deceleration to the highway guide sign in work zone five, where they started to 

decelerate again reacting to the shoulder taper. Also, drivers started to accelerate after 

periods of significant deceleration in reaction to the work area with the exception of work 

zone four when drivers encountered equipment and workers later in the work area. 

Overall, there were sinusoidal waves on deceleration behavior in the majority of the 

work zones, however, it was more obvious in work zone four with a right lane closure.  
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4.6.4 Effectiveness of Safety Features’ Layout 

There were various safety feature layouts in the 5 work zones in the study. The results 

revealed the first significant reaction to a work zone occurred in the closer proximity of the 

taper area. The presence of the DSFS in the safety features layout was very effective in 

reducing the mean speed by about 7 mph (12%) from 2,600 to 1,500 feet upstream of the 

taper location where the first three safety features applied. The reduction in mean speed in 

the right lane closure case was about 6% for similar distances. The presence of the DSFS in 

the layout resulted in a 4.4 and 3.6% increase in standard deviations for left and right lane 

closure scenarios, respectively. 

Including the DMS in the first three safety features layout had a greater success in 

reducing the mean speed when it was utilized closer to the taper point. The mean speed was  

reduced by 3.5%, from 1,900 to 1,000 feet, however, it only decreased by 1.1% when 

measured from 5,000 to 2,300 feet upstream of the taper. The presence of the DMS at a 

closer proximity to the taper also was effective in reducing the speed variations by about 

19% for overall and 48% for closed lane drivers at the similar interval.  

The safety features layout in the lane shift scenario had a greater success in reducing 

the the speed variation. The combination of the lane shift sign and the lane shift were 

effective in reducing the mean speed by 3% from 1,650 feet prior to the lane shift location. 

The layout was effective in reducing the speed variability by about 17% from the upstream of 

the first warning sign to the lane shift area. 

4.7 Conclusions 

The advantage of employing FDA for speed time series traces in work zones was to 

exploit its tools to disclose information not otherwise achievable in the data. The analysis 
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using FDA revealed interactions of drivers with various safety features in work zones not 

easily seen with conventional statistical approaches. The study illustrated key aspects of FDA 

using real data from SHRP 2 NDS with several key features. The NDS data were drawn from 

a continuous measurement with a smooth underlying process at a high frequency and 

replicated curves.  

The features of FDA were useful in summarizing the average driver’s behavior from 

a group of repeated speed time series traces in work zones to identify the effectiveness of 

countermeasures utilized to get driver’s attention to slow down and safely traverse the work 

zone. The standard deviation and confidence interval of data provided important information 

about speed variability, a major contributing factor to work zone safety critical events, 

associated with each countermeasure and a set of countermeasures collectively. The 

informative exploratory feature of funtional boxplots provided a solid range of data for 

analyzing driver behavior in reaction to various safety measures in work zones. The first 

derivative of speed profiles provided additional information about the nature of drivers and 

countermeasures interactions.  

The study results revealed many promising findings about the drivers’ interactions 

with work zones, the effectiveness of safety features utilized, and the location and layout of 

the safety features that enhance their effectiveness. 

The study findings suggest the DMS is effective in getting driver’s attention to reduce 

speed upstream of the taper area if applied at a closer proximity to the taper location. The 

DMS at this location also was effective in reducing speed variability in the overall model.  
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A long distance between the first and second warning signs with no indications of 

construction activities caused drivers to ignore the warning sign and accelerate again inside 

the work zone.  

The combination of safety features such as a flashing arrow and channelization 

caused a significant decrease in the speed and speed variations, simultaneously.  

The presence of equipment and workers in the work area was very effective in getting 

drivers’ attention to reduce their speed, however, it caused mixed results on speed variability.  

The DSFS was the single most effective safety features to get drivers to reduce their 

speed for overall, male, female, open lane, and closed lane drivers in the analysis models. 

The first derivative of speed profiles also provided invaluable information about the 

drivers’ deceleration behavior toward various safety features. The findings had important 

implications for improving work zone safety features layout and identifying the most 

effective safety features. The deceleration profiles showed an early and a significant decrease 

in reaction to the first warning sign and the DSFS at the upstream of the taper location. Also, 

the application of the lane merge sign and the DMS more proximate to the taper area caused 

a significant decrease in deceleration rates.  

The combined effect of the work zone warning signs and a merge sign with an 

attached advisory speed plate were significantly effective to get driver’s attention to reduce 

their speed in an early reaction to the presence of a work zone with a lane closure. However, 

the safety features layout of a lane shift scenario was very effective in reducing speed 

variability, which was identified to be an important contributing factor in work zone safety. 
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CHAPTER 5.  GENERAL CONCLUSIONS 

5.1 Conclusions and Implications 

There are a large and increasing number of road segments under construction as the 

highway system ages and requiring continuous maintenance and capacity development. The 

presence of a work zone increases the disturbance to traffic flow and can create severe safety 

issues. With a large number of fatalities and injuries occurring in work zones, improvements 

in work zone safety is a major concerns for transportation agencies the travelling publics, and 

construction workers. 

There are a large number of factors contributing to work zone crashes but it is 

believed that the major contributing factors are excessive speeding, speed variability, and 

inattentive driving. A number of countermeasures have been proposed and utilized to get 

drivers’ attention and encourage safe driving in work zones, but there is limited information 

about the effectiveness of those countermeasures since driver behaviors are not clearly 

understood. The traditional method is to use the crash data to determine and evaluate crash 

causation, but crash data only include limited detail about the situation and does not address 

human contributing factors effectively. As the past research identified driver as the major 

contributing factor in crashes, there is little information in crash reports describing how the 

driver contributed to the work zone crash. 

The NDS data, developed by the SHRP 2, provided a unique opportunity to observe 

actual driver behavior from a wide variety of drivers with broad age ranges in multiple states 

in order to understand how they interact with the presence of work zones and a set of safety 

features intended to encourage safe travel through work zones. 
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Analyzing crash data is not a new idea, but the NDS provided researchers with 

important additional data about the driver, roadway, and traffic environment through 

collection of time series and video data to help understand the role of the driver, as the major 

contributing factor to vehicle crashes, in traffic safety.  

The general objective of this dissertation was to utilize SHRP 2 NDS and RID data to 

develop models which can provide a thorough understanding of drivers’ work zone 

negotiations and interactions when various safety features are deployed. This was 

accomplished by developing a number of models to identify the major contributing factors to 

safety critical events, investigating how drivers interact with work zones with different 

characteristics and various safety feature layouts, and examining the effectiveness of 

individual safety features utilized to reduce vehicle speed in various work zones through 

three papers. 

The objective of the first paper in chapter 2 was to investigate the characteristics of 

safety critical events and compare that to the baseline events to identify the main contributing 

factors associated with work zone safety critical events. A total of 110 safety critical events 

and 89 baseline events were included in the analysis. The descriptive statistics revealed a 

number of important findings in this research. The rear end crashes attributed to more than 

67% of safety critical events. Young drivers (16-24) as well as female drivers were over-

represented in safety critical events. The descriptive statistics also revealed 56% of drivers 

were engaged in secondary tasks before the occurrence of safety critical events. Distractions 

and speeding accounted for 60% of driver behaviors that contributed to these events.  

The logistic regression model was used to predict the outcome of an event based on 

various identified explanatory variables. The model found 6 out of 18 tested variables to be 
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statistically significant. All variables remained in the model were significant at a 90% 

confidence level. Excessive speed, speed variations, distractions, interchange/intersection, 

urban area, and gender were significant and all positively correlated with the occurrence of 

safety critical events in work zones. The odd ratios provide insight about the magnitude of 

the predictors and found speeding, with a value of 11.7, to be the highest contributing factor 

to the event outcome. Higher speed variation also was an important contributing factor to 

increase the probability of safety critical events involvement. The probability of being 

involved in a safety critical event was 2.53 times greater than that for a baseline event when 

speed variation was high at work zones.  

The findings of this research could be used by transportation agencies to make 

informed decisions in developing appropriate safety strategies and deploying effective 

countermeasures to get drivers’ attention and reduce traffic speeds in response to the 

presence of a work zone. 

The second paper in Chapter 3 observed and analyzed driver behavior by using the 

speed time series data and forward videos in work zones. This study was successful in 

identifying the effectiveness of safety measures in various work zones with different 

characteristics. The PELT algorithm in multiple changepoint analysis effectively developed 

models to detect drivers’ interactions with a series of safety features in a variety of work 

zones with different traffic control plans. The study revealed a significant speed variability 

for work zones with lane closure scenarios, particularly for those with speed reduction 

requirements. There was a high variation in mean speed for the work zones with a low speed 

limit of 45 mph. Male drivers’ median speed was higher than that for female drivers, 
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however, female drivers showed higher speed variations. A higher variability was also 

observed in open lane when compared to closed lane traces.  

Female drivers generally had an earlier and slightly more significant reactions to the 

safety measures applied from the first warning sign up to the taper location compared to male 

drivers. Closed lane drivers were less reactive to the safety countermeasures applied prior to 

the taper area. The effect of a DMS is more pronounced when applied closer to the taper 

area.  

The findings of this research suggest applying more efficient safety features, such as a 

DMS in closer proximity to the taper area, are very effective encouraging drivers to slow 

down in work zones. A long distance between the first and second work zone warning signs 

with no activity has a contrary effect on speed reduction and eliminates the effect of the first 

warning sign. No speed reduction in work zones with a lane closure and 70 mph speed limit 

proved to be constructive in reducing speed variability. On the contrary, low work zone 

speed limits increased speed variability substantially. 

The combined DSFS and the first warning sign were found to be the most effective 

safety features to encourage speed reduction in work zones. The combination of the first 

warning sign and the DSFS along with the flashing arrow, tapering, and channelization had 

the highest combined effect in reducing mean speed in the work zone by as much as 40%. 

The combination of work zone warning signs with the attached advisory speed plate and the 

DSFS at 2,640 and 2,100 feet upstream of the taper location was a very successful safety 

strategy to slow the traffic before reaching to the taper area. 

The PELT algorithm in the multiple changepoint analysis was utilized to identify the 

optimal number and locations of multiple changepoints in the work zone speed time series 
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traces. The location and magnitude of changepoints provided valuable information about the 

effectiveness of a safety feature or the combined effects of various features to partition speed 

time series data into multiple segments with various statistical properties. The analysis 

revealed critically important discoveries about drivers’ interactions with the safety features 

utilized in the work zone and the dominant safety features in various work zones with 

different characteristics. 

The final paper in chapter 4 utilized the features of FDA to summarize driver 

behavior by analyzing speed time series data from SHRP 2 NDS. This study focused on five 

work zones, 4 with lane closures and one with a lane shift scenarios. The main purpose of 

this study to satisfy the limitations of the study in chapter 3 to investigate the effectiveness of 

any individual safety feature by examining the change in mean speed from a legible distance 

to that feature. Additionally, it was intended to discover where drivers start to react to the 

presence of a work zone and which safety features layout was the most successful to get 

driver’s attention to slow down prior to the merging point.   

The FDA involved several processes including the smoothing to convert the raw 

discrete time series data to functional data. The smoothing process of the FDA analysis was 

utilized to remove large noises from the raw data which helps to identify the unbiased 

average driver behavior for a series of repeated speed time series profiles. The average speed 

and the confidence interval were plotted to illustrate drivers’ speed behavior and interactions 

with work zones and utilized safety measures.  

The change in mean speed from a legible distance upstream of the safety feature was 

calculated and one sample t-test was utilized to learn if the countermeasure was effective to 

significantly change the mean speed. The DSFS was the most effective safety feature to 
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encourage safe driving in work zones. The DMS was effective in reducing speed as well as 

speed variability when applied at a closer proximity to the taper location. The mean speed 

plots indicate the presence of a DSFS caused the first significant reaction to the work zone 

and was similar for a DMS when it was utilized in a closer proximity to the taper point.  

The results also indicated the inclusion of a DSFS in the safety features layout was 

very effective in reducing the mean speed by about 7 mph (12%) from 2,600 to 1,500 feet 

upstream of the merging point. The study findings revealed the utilization of the DMS in the 

first three safety features layout in close proximity to the merging location reduced the mean 

speed by 3.5% from 1,900 to 1,000 feet upstream of the taper. The plots of functional mean 

and the confidence interval was very useful to demonstrate when drivers had their first 

significant reaction to the work zone and how they changed their speed in reaction to the 

utilized countermeasures. 

The recently developed technique of a functional boxplot was used to examine the 

depth of the middle 50% and the centrality variations of functional data. The informative 

exploratory feature of a funtional boxplot was utilized to observe and examine the effect of 

the work zone and safety features on speed variability, a major contributing factor to work 

zone safety critical events. The investigation of functional boxplots revealed the central 50% 

depth was wider for female and open lane drivers, which indicated a higher variability in the 

solid range of the data. It also showed male drivers’ tendency is toward the higher range 

while female drivers tend to drive at the lower range of the 50% depth. The lane shift 

scenario showed a narrower middle 50% depth and lower extremes, however, introduced 

more outliers. 



www.manaraa.com

271 

 

The first derivative of speed profiles provided additional invaluable information about 

the drivers’ deceleration behavior toward various safety features. The findings had important 

implications for improving work zone safety features layout and identifying the most 

effective safety features. The deceleration profiles revealed that deceleration rates reached 

the maximum in the work zone after drivers reacted to a DSFS. The exception was when the 

DSFS was applied at the work zone with a right lane closure where the maximum 

deceleration was reached at the taper and the work area. This may be due to the large number 

of traces in the inside (closed) lane where drivers usually drive at a lower speed. The inside 

lane drivers have less difficulty in finding a gap to merge into the outside (open) lane. It also 

showed that a maximum deceleration in the work zone was reached after drivers reacted to 

the DMS when utilized in a close proximity to the merge point. In the work zone with a left 

lane closure and no ITS applications, the maximum deceleration was reached in response to 

the work area and the presence of equipment and workers. 

The advanced techniques of FDA were found to be a cutting-edge approach to 

analyze driver behavior in the state of the art SHRP 2 NDS work zone data. The FDA 

methods were utilized to visualize the normal driver behavior and determine any change in 

behavior in reaction to various safety features in work zones. The exploratory functional 

boxplots provided important understandings of driver behavior when concentrating on the 

less biased and solid range of data, the middle 50% depth to examine the centrality, and its 

variations. The derivative of speed profiles also provided vital information about the drivers’ 

deceleration behavior toward various safety features. The findings had important 

implications for improving work zone safety features layout and identifying the most 

effective safety features in safety feature layouts.  
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All in all, the findings of the studies in this dissertation, and particularly the two 

leading-edge analyses of multiple changepoints and the FDA methods, discovered drivers’ 

speed behavior in a variety of work zones over the state-of-the-art SHRP 2 NDS dataset in a 

scale and detail that had never been studied. The NDS data provided a unique opportunity to 

identify the contributing factors to safety critical events in work zones and the utilization of 

the changepoints modeling and the FDA analysis provided valuable information about driver 

behavior, the most significant and most unknown contributing factor to all crashes. The 

findings have multiple important implications for transportation agencies, including updating 

their current TTCD with inclusion of the more effective safety features and possible optimal 

locations for utilization of those features, creating a more appropriate driver training 

program, and deploying the most effective safety features layout. 

5.2 Limitations 

The main limitation of this dissertation was in the first study which had a small 

sample size for safety critical events and baseline events. The small sample size of 110 

crashes and near crashes was mainly due to the scarcity of those events in work zones in 

SHRP 2 NDS data. This created some hurdles in building statistical inferences from the 

logistic regression model. Some of the variables in work zone related-data were combined for 

the purpose of analysis due to the small sample size and the diversity of categories in each 

variable. The small sample size is the main issue in analyzing some of the predominant 

factors in our data set. For example, all type of cell phone-related distractions were 

combined, therefore, the effect of texting and cell phone usage on the outcome of an event 

could not be verified due to the small sample size. Due to the scarce number of the safety 

critical events in the NDS data, it is recommended to use crash surrogates to model the safety 
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impacts associated with work zones. The baseline data is limited to 89 observations including 

multi-lane highways only, due to time and budget constraints. This may not be representative 

of all the SHARP 2 NDS baseline data and may affect our results. 

Also in the first study the baseline events were coded by VTTI for only 21 seconds 

durations. The segment of work zones coded could occur in any area of the work zone 

(upstream, work area, or downstream). Therefore, none of the baseline events include the full 

driving trace from upstream all the way throughout the work area.  

The study constraint of the second paper in chapter 3 was the low number of work 

zones with similar configurations and TTCD layout. Even work zones with identical safety 

features layout had different locations for the placement of safety features in regard to the 

taper location. Since this was a naturalistic driving in a natural environment, we had no 

control over the work zone configurations and safety measures layout unlike the 

experimental setups. The larger sample size is always preferred to minimize the effects of 

outliers. Having a higher number of traces for all work zone configurations and all sub-

groups of data would help to give more statistical power to our study results. 

5.3 Future Research 

The merging maneuver creates conflicts with traffic in both closed and open lanes, 

which increases crash risks. Therefore, merging behavior is a major safety concerns in work 

zones. A study may be conducted to investigate how drivers negotiate work zones and 

analyze factors influencing drivers’ merging behavior in work zones. This can be done by 

utilizing lane positioning variables in SHRP 2 NDS to verify the exact merging point for 

each trace in the work zone. Next the merging location of many traces can be identified and 

plotted in the work zone. Then the merging locations can be categorized as early, 
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intermediate, and late merge. There are many variables that can influence driver merging 

behavior, including distractions, excessive speeding, speed variations, posted speed limits, 

number of closed lane, a DMS, and a DSFS. Additionally, driver data such as age, gender, 

and prior traffic violations can be included in the study. The variables and the significance 

they contribute to each category can then be tested. 

The merging study can be expanded to investigate driver merging behavior associated 

with different work zone configurations and find the associated safety risks. For example, the 

merging behavior of work zones with left lane closures can be compared with those with 

right lane closures. As our study indicated, the outside lane drivers are usually driving at 

higher speeds and tend to attempt a late merge which is challenging to find a gap in the open 

lane, which raise important safety concerns. However, the majority of drivers were driving 

on the inside lane and tended to drive at a lower speed than the outside lane drivers. It seems 

they might have less difficulty in finding a gap to merge in to the open lane in the right lane 

closure scenario. There are situations where transportation agencies may have the option of 

left or right lane closure in order to direct traffic to the opposite side of the roadway. The 

findings of this study can help them to make an informed decision about lane closure 

deployment.  

Another important study could be the analysis of driver behavior and the 

effectiveness of safety features utilized in work zones in daytime versus the night time. The 

data reduced in this dissertation had very low proportion of night time traces, therefore it was 

not possible to investigate the effectiveness of countermeasures at night time. 

Finally, the baseline traces for before the implementation of work zone and the TTCD 

can be obtained and compared to when the work zone and safety features were deployed. The 
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work zone speed profiles and speed variability data in work zones can be compared to the 

baseline traces to determine whether the mean speed and the standard deviation of the speed 

had changed at a statistically significant level. 
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